M'hammed El Kahoui, Najoua Essamaoui, Mustapha Ouali
{"title":"二变量多项式 R 代数的局部零势 R 派生的中心子","authors":"M'hammed El Kahoui, Najoua Essamaoui, Mustapha Ouali","doi":"10.1016/j.jpaa.2024.107828","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be an integral domain containing <span><math><mi>Q</mi></math></span> and <em>ξ</em> be an irreducible nontrivial locally nilpotent <em>R</em>-derivation of the polynomial <em>R</em>-algebra <em>A</em> in two variables. In this paper we investigate the group <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> of <em>R</em>-automorphisms of <em>A</em> which commute with <em>ξ</em>. In the case <em>R</em> is a unique factorization domain and the plinth ideal of <em>ξ</em> is principal we give a complete description of the subgroup <span><math><msub><mrow><mi>SAut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> consisting of Jacobian one automorphisms. If moreover <em>R</em> contains a field <em>K</em> such that the group of units of <em>R</em> is <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> we prove that <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>SAut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The centralizer of a locally nilpotent R-derivation of the polynomial R-algebra in two variables\",\"authors\":\"M'hammed El Kahoui, Najoua Essamaoui, Mustapha Ouali\",\"doi\":\"10.1016/j.jpaa.2024.107828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be an integral domain containing <span><math><mi>Q</mi></math></span> and <em>ξ</em> be an irreducible nontrivial locally nilpotent <em>R</em>-derivation of the polynomial <em>R</em>-algebra <em>A</em> in two variables. In this paper we investigate the group <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> of <em>R</em>-automorphisms of <em>A</em> which commute with <em>ξ</em>. In the case <em>R</em> is a unique factorization domain and the plinth ideal of <em>ξ</em> is principal we give a complete description of the subgroup <span><math><msub><mrow><mi>SAut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> consisting of Jacobian one automorphisms. If moreover <em>R</em> contains a field <em>K</em> such that the group of units of <em>R</em> is <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> we prove that <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>SAut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002251\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002251","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 R 是包含 Q 的积分域,ξ 是两变量多项式 R 代数 A 的不可还原的非琐局部无穷 R 衍射。在本文中,我们将研究与ξ换元的 A 的 R 自变量群 AutR(A,ξ)。在 R 是唯一因式分解域且 ξ 的柱顶理想是主理想的情况下,我们给出了 AutR(A,ξ) 的子群 SAutR(A,ξ) 的完整描述,该子群由雅各布一自形化组成。如果 R 还包含一个域 K,使得 R 的单位群是 K⋆,我们就可以证明 AutR(A,ξ)=SAutR(A,ξ)。
The centralizer of a locally nilpotent R-derivation of the polynomial R-algebra in two variables
Let R be an integral domain containing and ξ be an irreducible nontrivial locally nilpotent R-derivation of the polynomial R-algebra A in two variables. In this paper we investigate the group of R-automorphisms of A which commute with ξ. In the case R is a unique factorization domain and the plinth ideal of ξ is principal we give a complete description of the subgroup of consisting of Jacobian one automorphisms. If moreover R contains a field K such that the group of units of R is we prove that .
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.