{"title":"聚碳酸酯与石墨烯和氧化硅的界面粘附力:分子动力学对比分析","authors":"Akinori Fukuhima , Hideyuki Uematsu","doi":"10.1016/j.surfin.2024.105323","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, molecular dynamics was used to evaluate the adsorption-free energy of polycarbonate on a solid wall surface that represented a fiber material. Three solid surfaces were used: clean graphene without functional groups to represent surface-treated carbon materials, graphene with OH groups without surface treatment, and SiO2 to represent glass fiber. The results showed that the adsorption free energy per unit area for clean graphene was greater than the adsorption free energy per unit area for the other two solid wall surfaces, which is different from the experimental results where the surface treated carbon fiber had a smaller adsorption free energy. The structure of benzene rings was analyzed, and it was found that benzene rings are deposited almost parallel to the solid wall on all solid walls and that the density of benzene rings with SiO2 and OH groups is the smallest on Graphene with the smallest angle and closest to the solid wall, resulting in smaller adsorption energy. This suggests that the π-π interaction between the benzene ring and the solid surface may account for a large proportion of the adsorption energy. It also suggests that chemical reactions between the solid surface and the polymer, which were not considered in this study, may have a significant effect on the adsorption energy.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial adhesion of polycarbonate to graphene and silicon oxide: A comparative molecular dynamics analysis\",\"authors\":\"Akinori Fukuhima , Hideyuki Uematsu\",\"doi\":\"10.1016/j.surfin.2024.105323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, molecular dynamics was used to evaluate the adsorption-free energy of polycarbonate on a solid wall surface that represented a fiber material. Three solid surfaces were used: clean graphene without functional groups to represent surface-treated carbon materials, graphene with OH groups without surface treatment, and SiO2 to represent glass fiber. The results showed that the adsorption free energy per unit area for clean graphene was greater than the adsorption free energy per unit area for the other two solid wall surfaces, which is different from the experimental results where the surface treated carbon fiber had a smaller adsorption free energy. The structure of benzene rings was analyzed, and it was found that benzene rings are deposited almost parallel to the solid wall on all solid walls and that the density of benzene rings with SiO2 and OH groups is the smallest on Graphene with the smallest angle and closest to the solid wall, resulting in smaller adsorption energy. This suggests that the π-π interaction between the benzene ring and the solid surface may account for a large proportion of the adsorption energy. It also suggests that chemical reactions between the solid surface and the polymer, which were not considered in this study, may have a significant effect on the adsorption energy.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024014792\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024014792","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interfacial adhesion of polycarbonate to graphene and silicon oxide: A comparative molecular dynamics analysis
In this study, molecular dynamics was used to evaluate the adsorption-free energy of polycarbonate on a solid wall surface that represented a fiber material. Three solid surfaces were used: clean graphene without functional groups to represent surface-treated carbon materials, graphene with OH groups without surface treatment, and SiO2 to represent glass fiber. The results showed that the adsorption free energy per unit area for clean graphene was greater than the adsorption free energy per unit area for the other two solid wall surfaces, which is different from the experimental results where the surface treated carbon fiber had a smaller adsorption free energy. The structure of benzene rings was analyzed, and it was found that benzene rings are deposited almost parallel to the solid wall on all solid walls and that the density of benzene rings with SiO2 and OH groups is the smallest on Graphene with the smallest angle and closest to the solid wall, resulting in smaller adsorption energy. This suggests that the π-π interaction between the benzene ring and the solid surface may account for a large proportion of the adsorption energy. It also suggests that chemical reactions between the solid surface and the polymer, which were not considered in this study, may have a significant effect on the adsorption energy.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.