{"title":"关于具有给定支配数的树木的偏心连通指数","authors":"","doi":"10.1016/j.dam.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a simple connected finite graph. The eccentric connectivity index (ECI) of <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msup><mrow><mi>ξ</mi></mrow><mrow><mi>c</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the eccentricity of <span><math><mi>v</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the degree of <span><math><mi>v</mi></math></span>. We denote the set of trees with order <span><math><mi>n</mi></math></span> and domination number <span><math><mi>γ</mi></math></span> by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span>. In this paper, the extremal trees having the minimal ECI among <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span> are determined. The tree among <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span> satisfying <span><math><mrow><mn>2</mn><mo>≤</mo><mi>γ</mi><mo>≤</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> having the maximal ECI is also characterized. For <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>≤</mo><mi>γ</mi><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, the tree among all caterpillars with domination number <span><math><mi>γ</mi></math></span> having the maximal ECI is determined.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the eccentric connectivity index of trees with given domination number\",\"authors\":\"\",\"doi\":\"10.1016/j.dam.2024.10.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a simple connected finite graph. The eccentric connectivity index (ECI) of <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msup><mrow><mi>ξ</mi></mrow><mrow><mi>c</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the eccentricity of <span><math><mi>v</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the degree of <span><math><mi>v</mi></math></span>. We denote the set of trees with order <span><math><mi>n</mi></math></span> and domination number <span><math><mi>γ</mi></math></span> by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span>. In this paper, the extremal trees having the minimal ECI among <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span> are determined. The tree among <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span> satisfying <span><math><mrow><mn>2</mn><mo>≤</mo><mi>γ</mi><mo>≤</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> having the maximal ECI is also characterized. For <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>≤</mo><mi>γ</mi><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, the tree among all caterpillars with domination number <span><math><mi>γ</mi></math></span> having the maximal ECI is determined.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2400444X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2400444X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是一个简单连通的有限图。G 的偏心连通指数(ECI)定义为ξc(G)=∑v∈V(G)ɛG(v)dG(v),其中ɛG(v)是 v 的偏心率,dG(v) 是 v 的度数。我们用 Tn,γ 表示阶数为 n、主宰数为 γ 的树集合。本文将确定 Tn,γ 中 ECI 最小的极值树。此外,本文还描述了 Tn,γ 中满足 2≤γ≤⌈n3⌉ 且具有最大 ECI 的树。对于⌈n3⌉≤γ≤n2,确定了具有最大 ECI 的支配数 γ 的所有毛虫中的树。
On the eccentric connectivity index of trees with given domination number
Let be a simple connected finite graph. The eccentric connectivity index (ECI) of is defined as , where is the eccentricity of , is the degree of . We denote the set of trees with order and domination number by . In this paper, the extremal trees having the minimal ECI among are determined. The tree among satisfying having the maximal ECI is also characterized. For , the tree among all caterpillars with domination number having the maximal ECI is determined.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.