{"title":"使用 SLM 工艺评估 316L SS Gyroid 和 Diamond 结构的压缩性能 - 静态和动态压缩载荷下的实验方案","authors":"","doi":"10.1016/j.ijimpeng.2024.105147","DOIUrl":null,"url":null,"abstract":"<div><div>The relative comparison in terms of energy absorption efficiency for a set of 4 structures made of various Triply Periodic Minimal Surfaces (TPMS) topologies is experimentally investigated. These TPMS structures are printed by Selective Laser Melting AM process using 316L SS. The study is carried out in consideration of the effect of parameters such as relative density, compressive loading directions and loading rates, number of unit cells for Diamond and Gyroids TPMS both declined for Sheet and Skeletal topologies. The objective is to quantify their structural responses in terms of apparent stress and strain, dynamic enhancement and Specific Energy Absorbed (SEA) and to evaluate their structural integrity in terms of collapse stability. The results reveal that the Sheet pattern of TPMS structures with its constant wall thickness and uniform geometry exhibits better energy absorption capabilities than the Skeletal pattern. The Diamond family shows greater interest rather than the Gyroid family only in the case of the Sheet pattern. The increase in relative density from 20 to 30 % is characterised by improved manufacturing quality, an increase in energy absorption capacity and more homogeneous progressive deformations during compression. On the whole, the set of TPMS geometries exhibits energy absorption capacities prior to those of other conventional cellular materials currently used for impact engineering applications. Finally, in a first approach, an original design methodology using charts can be developed to establish a link between the energy absorption capabilities and the design geometric parameters of TPMS structures.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of compression behaviour of 316L SS Gyroid and Diamond structures using SLM process – Experimental programme under static and dynamic compression loadings\",\"authors\":\"\",\"doi\":\"10.1016/j.ijimpeng.2024.105147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The relative comparison in terms of energy absorption efficiency for a set of 4 structures made of various Triply Periodic Minimal Surfaces (TPMS) topologies is experimentally investigated. These TPMS structures are printed by Selective Laser Melting AM process using 316L SS. The study is carried out in consideration of the effect of parameters such as relative density, compressive loading directions and loading rates, number of unit cells for Diamond and Gyroids TPMS both declined for Sheet and Skeletal topologies. The objective is to quantify their structural responses in terms of apparent stress and strain, dynamic enhancement and Specific Energy Absorbed (SEA) and to evaluate their structural integrity in terms of collapse stability. The results reveal that the Sheet pattern of TPMS structures with its constant wall thickness and uniform geometry exhibits better energy absorption capabilities than the Skeletal pattern. The Diamond family shows greater interest rather than the Gyroid family only in the case of the Sheet pattern. The increase in relative density from 20 to 30 % is characterised by improved manufacturing quality, an increase in energy absorption capacity and more homogeneous progressive deformations during compression. On the whole, the set of TPMS geometries exhibits energy absorption capacities prior to those of other conventional cellular materials currently used for impact engineering applications. Finally, in a first approach, an original design methodology using charts can be developed to establish a link between the energy absorption capabilities and the design geometric parameters of TPMS structures.</div></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002720\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002720","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Evaluation of compression behaviour of 316L SS Gyroid and Diamond structures using SLM process – Experimental programme under static and dynamic compression loadings
The relative comparison in terms of energy absorption efficiency for a set of 4 structures made of various Triply Periodic Minimal Surfaces (TPMS) topologies is experimentally investigated. These TPMS structures are printed by Selective Laser Melting AM process using 316L SS. The study is carried out in consideration of the effect of parameters such as relative density, compressive loading directions and loading rates, number of unit cells for Diamond and Gyroids TPMS both declined for Sheet and Skeletal topologies. The objective is to quantify their structural responses in terms of apparent stress and strain, dynamic enhancement and Specific Energy Absorbed (SEA) and to evaluate their structural integrity in terms of collapse stability. The results reveal that the Sheet pattern of TPMS structures with its constant wall thickness and uniform geometry exhibits better energy absorption capabilities than the Skeletal pattern. The Diamond family shows greater interest rather than the Gyroid family only in the case of the Sheet pattern. The increase in relative density from 20 to 30 % is characterised by improved manufacturing quality, an increase in energy absorption capacity and more homogeneous progressive deformations during compression. On the whole, the set of TPMS geometries exhibits energy absorption capacities prior to those of other conventional cellular materials currently used for impact engineering applications. Finally, in a first approach, an original design methodology using charts can be developed to establish a link between the energy absorption capabilities and the design geometric parameters of TPMS structures.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications