Nadine Schwaar, Dominik Benke, Markus Retsch and Werner A. Goedel*,
{"title":"带有椭圆形毛孔的浮动铸造微筛","authors":"Nadine Schwaar, Dominik Benke, Markus Retsch and Werner A. Goedel*, ","doi":"10.1021/acs.langmuir.4c0123210.1021/acs.langmuir.4c01232","DOIUrl":null,"url":null,"abstract":"<p >Polymeric microsieves bearing elliptical pores were successfully prepared via float-casting: a dispersion comprising nonvolatile acrylate monomers and ellipsoidal polystyrene particles was spread onto a water surface. The resulting self-organized monolayer was laterally compressed, and the monomer was photopolymerized, giving rise to a membrane comprising ellipsoidal particles laterally embedded in a 0.5 μm thin polymer membrane. The particles were dissolved, leaving behind elliptical pores. These pores had an average length of the major axis of 0.87 ± 0.1 μm and of the minor axis of 0.42 ± 0.07 μm and an aspect ratio of approximately 2. The microsieve bearing these submicrometric elliptical pores was transferred to a hierarchical structure made out of microsieves bearing circular pores of 6 μm diameter on top of a microsieve with 70 μm diameter pores. The resulting hierarchically structured microsieve had a porosity of 0.13. At a pressure difference of typically 10<sup>3</sup> Pa (Reynolds number aprox. 0.002), the volumetric permeance for water was <i>Pe</i> = <i></i><math><mover><mi>V</mi><mo>˙</mo></mover></math>/<i>A</i>/Δ<i>p</i> = 0.5·10<sup>–6</sup> m/s/Pa, the product viscosity·permeance is η·<i></i><math><mover><mi>V</mi><mo>˙</mo></mover></math>/<i>A</i>/Δ<i>p</i> = 0.5·10<sup>–9</sup> m. This value is lower than the corresponding values of microsieves with circular pores of similar diameter produced by the same technique. The beneficial effects of higher permeance per pore caused by the elliptical shape are countered by lower porosity caused by less efficient packing of the ellipsoidal particles.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 43","pages":"22516–22525 22516–22525"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.langmuir.4c01232","citationCount":"0","resultStr":"{\"title\":\"Float-Cast Microsieves with Elliptical Pores\",\"authors\":\"Nadine Schwaar, Dominik Benke, Markus Retsch and Werner A. Goedel*, \",\"doi\":\"10.1021/acs.langmuir.4c0123210.1021/acs.langmuir.4c01232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymeric microsieves bearing elliptical pores were successfully prepared via float-casting: a dispersion comprising nonvolatile acrylate monomers and ellipsoidal polystyrene particles was spread onto a water surface. The resulting self-organized monolayer was laterally compressed, and the monomer was photopolymerized, giving rise to a membrane comprising ellipsoidal particles laterally embedded in a 0.5 μm thin polymer membrane. The particles were dissolved, leaving behind elliptical pores. These pores had an average length of the major axis of 0.87 ± 0.1 μm and of the minor axis of 0.42 ± 0.07 μm and an aspect ratio of approximately 2. The microsieve bearing these submicrometric elliptical pores was transferred to a hierarchical structure made out of microsieves bearing circular pores of 6 μm diameter on top of a microsieve with 70 μm diameter pores. The resulting hierarchically structured microsieve had a porosity of 0.13. At a pressure difference of typically 10<sup>3</sup> Pa (Reynolds number aprox. 0.002), the volumetric permeance for water was <i>Pe</i> = <i></i><math><mover><mi>V</mi><mo>˙</mo></mover></math>/<i>A</i>/Δ<i>p</i> = 0.5·10<sup>–6</sup> m/s/Pa, the product viscosity·permeance is η·<i></i><math><mover><mi>V</mi><mo>˙</mo></mover></math>/<i>A</i>/Δ<i>p</i> = 0.5·10<sup>–9</sup> m. This value is lower than the corresponding values of microsieves with circular pores of similar diameter produced by the same technique. The beneficial effects of higher permeance per pore caused by the elliptical shape are countered by lower porosity caused by less efficient packing of the ellipsoidal particles.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"40 43\",\"pages\":\"22516–22525 22516–22525\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.langmuir.4c01232\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01232\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Polymeric microsieves bearing elliptical pores were successfully prepared via float-casting: a dispersion comprising nonvolatile acrylate monomers and ellipsoidal polystyrene particles was spread onto a water surface. The resulting self-organized monolayer was laterally compressed, and the monomer was photopolymerized, giving rise to a membrane comprising ellipsoidal particles laterally embedded in a 0.5 μm thin polymer membrane. The particles were dissolved, leaving behind elliptical pores. These pores had an average length of the major axis of 0.87 ± 0.1 μm and of the minor axis of 0.42 ± 0.07 μm and an aspect ratio of approximately 2. The microsieve bearing these submicrometric elliptical pores was transferred to a hierarchical structure made out of microsieves bearing circular pores of 6 μm diameter on top of a microsieve with 70 μm diameter pores. The resulting hierarchically structured microsieve had a porosity of 0.13. At a pressure difference of typically 103 Pa (Reynolds number aprox. 0.002), the volumetric permeance for water was Pe = /A/Δp = 0.5·10–6 m/s/Pa, the product viscosity·permeance is η·/A/Δp = 0.5·10–9 m. This value is lower than the corresponding values of microsieves with circular pores of similar diameter produced by the same technique. The beneficial effects of higher permeance per pore caused by the elliptical shape are countered by lower porosity caused by less efficient packing of the ellipsoidal particles.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).