Yassine Slimani, Munirah Abdullah Almessiere*, Abdulhadi Baykal, Ayse Demir Korkmaz, Hakan Gungunes, Sagar E. Shirsath, Denis S. Klygach, Tatiana I. Zubar, Alex V. Trukhanov and Latifah I. Al-Jumaiah,
{"title":"Nd-Ho 共取代 Co0.5Ni0.5Fe2O4 纳米星形铁氧体的制备及其微观结构、磁性和电磁特性探索","authors":"Yassine Slimani, Munirah Abdullah Almessiere*, Abdulhadi Baykal, Ayse Demir Korkmaz, Hakan Gungunes, Sagar E. Shirsath, Denis S. Klygach, Tatiana I. Zubar, Alex V. Trukhanov and Latifah I. Al-Jumaiah, ","doi":"10.1021/acs.inorgchem.4c0346810.1021/acs.inorgchem.4c03468","DOIUrl":null,"url":null,"abstract":"<p >The composition and hyperfine structures of Nd<sup>3+</sup>–Ho<sup>3+</sup> ions cosubstituted CoNi nanospinel ferrites (Co<sub>0.5</sub>Ni<sub>0.5</sub>Nd<sub><i>x</i></sub>Ho<sub><i>x</i></sub>Fe<sub>2–2<i>x</i></sub>O<sub>4</sub> (<i>x</i> ≤ 0.05) NSFs) as well as their magnetic and electrodynamic behavior have been presented. The compound Nd–Ho → CoNiFe<sub>2</sub>O<sub>4</sub> (<i>x</i> ≤ 0.05) NSFs were produced using the sol–gel method. XRD powder patterns indicated phase- and substituent-induced modifications of crystallites. The SEM analysis indicated the homogeneous distribution of grains with Nd–Ho cosubstitution. It was found that the values of <i>x</i> had an impact on the hyperfine magnetic field of the A and B sites. The cation distribution was determined by using Mössbauer spectroscopy. The M-H loops’ investigations showed that the current NSFs behave ferrimagnetically at both room and low temperatures. An almost continuous rise in the strength of the coercive field was noticed with a rise in Ho–Nd content. The value of calculated squareness ratio values was above 0.5 at both temperatures, entailing that the studied NSFs’ structure is made of single magnetic domains. The electromagnetic characteristics of the samples can be explained by the main contribution to electromagnetic absorption being the electric energy losses. Electromagnetic absorbed materials can be applied to provide electromagnetic compatibility and develop functional electromagnetic shields.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 43","pages":"20749–20761 20749–20761"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Nd–Ho Cosubstituted Co0.5Ni0.5Fe2O4 Nanospinel Ferrites and Exploration of Their Microstructure, Magnetic, and Electromagnetic Characteristics\",\"authors\":\"Yassine Slimani, Munirah Abdullah Almessiere*, Abdulhadi Baykal, Ayse Demir Korkmaz, Hakan Gungunes, Sagar E. Shirsath, Denis S. Klygach, Tatiana I. Zubar, Alex V. Trukhanov and Latifah I. Al-Jumaiah, \",\"doi\":\"10.1021/acs.inorgchem.4c0346810.1021/acs.inorgchem.4c03468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The composition and hyperfine structures of Nd<sup>3+</sup>–Ho<sup>3+</sup> ions cosubstituted CoNi nanospinel ferrites (Co<sub>0.5</sub>Ni<sub>0.5</sub>Nd<sub><i>x</i></sub>Ho<sub><i>x</i></sub>Fe<sub>2–2<i>x</i></sub>O<sub>4</sub> (<i>x</i> ≤ 0.05) NSFs) as well as their magnetic and electrodynamic behavior have been presented. The compound Nd–Ho → CoNiFe<sub>2</sub>O<sub>4</sub> (<i>x</i> ≤ 0.05) NSFs were produced using the sol–gel method. XRD powder patterns indicated phase- and substituent-induced modifications of crystallites. The SEM analysis indicated the homogeneous distribution of grains with Nd–Ho cosubstitution. It was found that the values of <i>x</i> had an impact on the hyperfine magnetic field of the A and B sites. The cation distribution was determined by using Mössbauer spectroscopy. The M-H loops’ investigations showed that the current NSFs behave ferrimagnetically at both room and low temperatures. An almost continuous rise in the strength of the coercive field was noticed with a rise in Ho–Nd content. The value of calculated squareness ratio values was above 0.5 at both temperatures, entailing that the studied NSFs’ structure is made of single magnetic domains. The electromagnetic characteristics of the samples can be explained by the main contribution to electromagnetic absorption being the electric energy losses. Electromagnetic absorbed materials can be applied to provide electromagnetic compatibility and develop functional electromagnetic shields.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"63 43\",\"pages\":\"20749–20761 20749–20761\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03468\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03468","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Fabrication of Nd–Ho Cosubstituted Co0.5Ni0.5Fe2O4 Nanospinel Ferrites and Exploration of Their Microstructure, Magnetic, and Electromagnetic Characteristics
The composition and hyperfine structures of Nd3+–Ho3+ ions cosubstituted CoNi nanospinel ferrites (Co0.5Ni0.5NdxHoxFe2–2xO4 (x ≤ 0.05) NSFs) as well as their magnetic and electrodynamic behavior have been presented. The compound Nd–Ho → CoNiFe2O4 (x ≤ 0.05) NSFs were produced using the sol–gel method. XRD powder patterns indicated phase- and substituent-induced modifications of crystallites. The SEM analysis indicated the homogeneous distribution of grains with Nd–Ho cosubstitution. It was found that the values of x had an impact on the hyperfine magnetic field of the A and B sites. The cation distribution was determined by using Mössbauer spectroscopy. The M-H loops’ investigations showed that the current NSFs behave ferrimagnetically at both room and low temperatures. An almost continuous rise in the strength of the coercive field was noticed with a rise in Ho–Nd content. The value of calculated squareness ratio values was above 0.5 at both temperatures, entailing that the studied NSFs’ structure is made of single magnetic domains. The electromagnetic characteristics of the samples can be explained by the main contribution to electromagnetic absorption being the electric energy losses. Electromagnetic absorbed materials can be applied to provide electromagnetic compatibility and develop functional electromagnetic shields.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.