基于图像的机器学习支持包晶氧酸酐 BaTiO3-xHx 的氢化物含量控制

Taichi Sano, Yuki Ide*, Tatsuya Tsumori, Hiroki Ubukata, Ichigaku Takigawa, Hiroshi Kageyama and Yasuhide Inokuma*, 
{"title":"基于图像的机器学习支持包晶氧酸酐 BaTiO3-xHx 的氢化物含量控制","authors":"Taichi Sano,&nbsp;Yuki Ide*,&nbsp;Tatsuya Tsumori,&nbsp;Hiroki Ubukata,&nbsp;Ichigaku Takigawa,&nbsp;Hiroshi Kageyama and Yasuhide Inokuma*,&nbsp;","doi":"10.1021/acsaenm.4c0041710.1021/acsaenm.4c00417","DOIUrl":null,"url":null,"abstract":"<p >Hydride content in perovskite oxyhydrides represents a crucial parameter that governs properties of the materials. However, the synthesis of the oxyhidrides with precise control over the hydride content <i>x</i> remains a challenging task because of the time-consuming and/or destructive analytical methods typically used for the determination of <i>x</i>. Here, we report an image-based machine learning (ML) system for prediction of the hydride contents <i>x</i> in a perovskite oxyhydride BaTiO<sub>3–<i>x</i></sub>H<sub><i>x</i></sub> using a picture of powder material as a quick evaluation method of hydride content <i>x</i>. The ML system, which employs the ExtraTrees algorithm, enabled the prediction of <i>x</i> with a mean absolute error of 0.013 and a low running cost. Although a similar ML system constructed by convolutional neural networks (CNN) that we used in the previous study demonstrated comparable accuracy in the prediction, the system with ExtraTrees was more computationally efficient, thus was applied as a nondestructive and quick analytical method for hydride content <i>x</i>. Using the ML system, detailed profiles of thermal hydrogen release of BaTiO<sub>3–<i>x</i></sub>H<sub><i>x</i></sub> were quantitatively analyzed to demonstrate the feasibility of fine-tuning the hydride content within 0 ≤ <i>x</i> ≤ 0.4 by adjusting the processing temperature. In the case of powder samples comprising mixtures of the oxyhydride with different hydride contents, the ML-based prediction provided an almost averaged value for <i>x</i>. The present results demonstrate an application of image-based ML for the fine-tuning of oxyhidride materials.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"2 10","pages":"2391–2396 2391–2396"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydride Content Control of Perovskite Oxyhydride BaTiO3–xHx Supported by Image-Based Machine Learning\",\"authors\":\"Taichi Sano,&nbsp;Yuki Ide*,&nbsp;Tatsuya Tsumori,&nbsp;Hiroki Ubukata,&nbsp;Ichigaku Takigawa,&nbsp;Hiroshi Kageyama and Yasuhide Inokuma*,&nbsp;\",\"doi\":\"10.1021/acsaenm.4c0041710.1021/acsaenm.4c00417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydride content in perovskite oxyhydrides represents a crucial parameter that governs properties of the materials. However, the synthesis of the oxyhidrides with precise control over the hydride content <i>x</i> remains a challenging task because of the time-consuming and/or destructive analytical methods typically used for the determination of <i>x</i>. Here, we report an image-based machine learning (ML) system for prediction of the hydride contents <i>x</i> in a perovskite oxyhydride BaTiO<sub>3–<i>x</i></sub>H<sub><i>x</i></sub> using a picture of powder material as a quick evaluation method of hydride content <i>x</i>. The ML system, which employs the ExtraTrees algorithm, enabled the prediction of <i>x</i> with a mean absolute error of 0.013 and a low running cost. Although a similar ML system constructed by convolutional neural networks (CNN) that we used in the previous study demonstrated comparable accuracy in the prediction, the system with ExtraTrees was more computationally efficient, thus was applied as a nondestructive and quick analytical method for hydride content <i>x</i>. Using the ML system, detailed profiles of thermal hydrogen release of BaTiO<sub>3–<i>x</i></sub>H<sub><i>x</i></sub> were quantitatively analyzed to demonstrate the feasibility of fine-tuning the hydride content within 0 ≤ <i>x</i> ≤ 0.4 by adjusting the processing temperature. In the case of powder samples comprising mixtures of the oxyhydride with different hydride contents, the ML-based prediction provided an almost averaged value for <i>x</i>. The present results demonstrate an application of image-based ML for the fine-tuning of oxyhidride materials.</p>\",\"PeriodicalId\":55639,\"journal\":{\"name\":\"ACS Applied Engineering Materials\",\"volume\":\"2 10\",\"pages\":\"2391–2396 2391–2396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaenm.4c00417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaenm.4c00417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过氧化物氧氢化物中的氢化物含量是影响材料特性的关键参数。然而,由于测定氢化物含量 x 通常采用耗时和/或破坏性的分析方法,因此合成氢氧化合物并精确控制氢化物含量 x 仍然是一项具有挑战性的任务。在此,我们报告了一种基于图像的机器学习(ML)系统,该系统使用粉末材料的图片作为氢化物含量 x 的快速评估方法,用于预测包晶氧酸酐 BaTiO3-xHx 中的氢化物含量 x。虽然我们在之前的研究中使用的由卷积神经网络(CNN)构建的类似 ML 系统的预测精度相当,但使用 ExtraTrees 算法的系统计算效率更高,因此被用作氢化物含量 x 的无损快速分析方法。使用 ML 系统,我们定量分析了 BaTiO3-xHx 的热氢释放的详细曲线,证明了通过调整加工温度在 0 ≤ x ≤ 0.4 范围内微调氢化物含量的可行性。对于由不同氢化物含量的氢氧化合物混合物组成的粉末样品,基于 ML 的预测几乎提供了 x 的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydride Content Control of Perovskite Oxyhydride BaTiO3–xHx Supported by Image-Based Machine Learning

Hydride Content Control of Perovskite Oxyhydride BaTiO3–xHx Supported by Image-Based Machine Learning

Hydride content in perovskite oxyhydrides represents a crucial parameter that governs properties of the materials. However, the synthesis of the oxyhidrides with precise control over the hydride content x remains a challenging task because of the time-consuming and/or destructive analytical methods typically used for the determination of x. Here, we report an image-based machine learning (ML) system for prediction of the hydride contents x in a perovskite oxyhydride BaTiO3–xHx using a picture of powder material as a quick evaluation method of hydride content x. The ML system, which employs the ExtraTrees algorithm, enabled the prediction of x with a mean absolute error of 0.013 and a low running cost. Although a similar ML system constructed by convolutional neural networks (CNN) that we used in the previous study demonstrated comparable accuracy in the prediction, the system with ExtraTrees was more computationally efficient, thus was applied as a nondestructive and quick analytical method for hydride content x. Using the ML system, detailed profiles of thermal hydrogen release of BaTiO3–xHx were quantitatively analyzed to demonstrate the feasibility of fine-tuning the hydride content within 0 ≤ x ≤ 0.4 by adjusting the processing temperature. In the case of powder samples comprising mixtures of the oxyhydride with different hydride contents, the ML-based prediction provided an almost averaged value for x. The present results demonstrate an application of image-based ML for the fine-tuning of oxyhidride materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信