线粒体靶向金生物金属化技术用于光声可视化光热癌症疗法

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zheng Luo, Yin Cao, Zhihuan Liao, Ningqiang Gong, Panqin Ma, Zhiguo Li, Xiyu Lai, Yuhan Zhang, Xuan Zhu, Zibiao Li*, Yun-Long Wu* and Shuaidong Huo*, 
{"title":"线粒体靶向金生物金属化技术用于光声可视化光热癌症疗法","authors":"Zheng Luo,&nbsp;Yin Cao,&nbsp;Zhihuan Liao,&nbsp;Ningqiang Gong,&nbsp;Panqin Ma,&nbsp;Zhiguo Li,&nbsp;Xiyu Lai,&nbsp;Yuhan Zhang,&nbsp;Xuan Zhu,&nbsp;Zibiao Li*,&nbsp;Yun-Long Wu* and Shuaidong Huo*,&nbsp;","doi":"10.1021/acsnano.4c0856710.1021/acsnano.4c08567","DOIUrl":null,"url":null,"abstract":"<p >Subcellular biomineralization systems with cellular intervention functions have shown great potential in cancer theranostic applications. However, the lack of subcellular specificity, high ion concentrations, and long incubation time required for biomineralization still limit its <i>in vivo</i> therapeutic efficacy. Herein, we report a mitochondria-targeted polymer–gold complex (TPPM-Au) to realize mitochondrial biometallization, which involves analogous mechanisms during biomineralization, for cancer treatment <i>in vivo</i>. The TPP-containing TPPM-Au delivered more Au<sup>3+</sup> selectively into the mitochondria of cancer cells than normal cells, rapidly mineralizing to gold nanoparticles (GNPs) and consuming a large amount of the antioxidant glutathione (GSH). The formed GNPs can further continue consuming GSH with the atomic economy by forming Au–S with GSH, which further results in the accumulation of reactive oxygen species (ROS), thereby impairing mitochondrial function and inducing cell apoptosis. More importantly, TPPM-Au is capable of having superior tumor-penetrating, excellent photothermal and photoacoustic properties, endowing it with the ability to inhibit tumor growth through spatiotemporally monitorable mitochondria-targeted biometallization and photothermal therapy. The mitochondria-targeted gold biometallization theranostic platform provides insight into the application of subcellularly targeted biometallization or biomineralization in cancer therapy.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 43","pages":"29667–29677 29667–29677"},"PeriodicalIF":16.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondria-Targeted Gold Biometallization for Photoacoustically Visualized Photothermal Cancer Therapy\",\"authors\":\"Zheng Luo,&nbsp;Yin Cao,&nbsp;Zhihuan Liao,&nbsp;Ningqiang Gong,&nbsp;Panqin Ma,&nbsp;Zhiguo Li,&nbsp;Xiyu Lai,&nbsp;Yuhan Zhang,&nbsp;Xuan Zhu,&nbsp;Zibiao Li*,&nbsp;Yun-Long Wu* and Shuaidong Huo*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c0856710.1021/acsnano.4c08567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Subcellular biomineralization systems with cellular intervention functions have shown great potential in cancer theranostic applications. However, the lack of subcellular specificity, high ion concentrations, and long incubation time required for biomineralization still limit its <i>in vivo</i> therapeutic efficacy. Herein, we report a mitochondria-targeted polymer–gold complex (TPPM-Au) to realize mitochondrial biometallization, which involves analogous mechanisms during biomineralization, for cancer treatment <i>in vivo</i>. The TPP-containing TPPM-Au delivered more Au<sup>3+</sup> selectively into the mitochondria of cancer cells than normal cells, rapidly mineralizing to gold nanoparticles (GNPs) and consuming a large amount of the antioxidant glutathione (GSH). The formed GNPs can further continue consuming GSH with the atomic economy by forming Au–S with GSH, which further results in the accumulation of reactive oxygen species (ROS), thereby impairing mitochondrial function and inducing cell apoptosis. More importantly, TPPM-Au is capable of having superior tumor-penetrating, excellent photothermal and photoacoustic properties, endowing it with the ability to inhibit tumor growth through spatiotemporally monitorable mitochondria-targeted biometallization and photothermal therapy. The mitochondria-targeted gold biometallization theranostic platform provides insight into the application of subcellularly targeted biometallization or biomineralization in cancer therapy.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 43\",\"pages\":\"29667–29677 29667–29677\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c08567\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c08567","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有细胞干预功能的亚细胞生物矿化系统在癌症治疗应用中显示出巨大的潜力。然而,生物矿化所需的亚细胞特异性不足、离子浓度高和培养时间长等问题仍然限制了其体内疗效。在此,我们报告了一种线粒体靶向聚合物金复合物(TPPM-Au),以实现线粒体生物金属化,其中涉及生物矿化过程中的类似机制,用于体内癌症治疗。与正常细胞相比,含TPP的TPPM-Au能将更多的Au3+选择性地输送到癌细胞的线粒体中,迅速矿化成金纳米颗粒(GNPs),并消耗大量的抗氧化剂谷胱甘肽(GSH)。形成的 GNPs 可通过与 GSH 形成 Au-S,以原子经济的方式继续消耗 GSH,进一步导致活性氧(ROS)的积累,从而损害线粒体功能并诱导细胞凋亡。更重要的是,TPPM-Au 具有卓越的肿瘤穿透性、出色的光热和光声特性,可通过时空监测线粒体靶向生物金属化和光热疗法抑制肿瘤生长。线粒体靶向金生物金属化疗法平台为亚细胞靶向生物金属化或生物矿化在癌症治疗中的应用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitochondria-Targeted Gold Biometallization for Photoacoustically Visualized Photothermal Cancer Therapy

Mitochondria-Targeted Gold Biometallization for Photoacoustically Visualized Photothermal Cancer Therapy

Subcellular biomineralization systems with cellular intervention functions have shown great potential in cancer theranostic applications. However, the lack of subcellular specificity, high ion concentrations, and long incubation time required for biomineralization still limit its in vivo therapeutic efficacy. Herein, we report a mitochondria-targeted polymer–gold complex (TPPM-Au) to realize mitochondrial biometallization, which involves analogous mechanisms during biomineralization, for cancer treatment in vivo. The TPP-containing TPPM-Au delivered more Au3+ selectively into the mitochondria of cancer cells than normal cells, rapidly mineralizing to gold nanoparticles (GNPs) and consuming a large amount of the antioxidant glutathione (GSH). The formed GNPs can further continue consuming GSH with the atomic economy by forming Au–S with GSH, which further results in the accumulation of reactive oxygen species (ROS), thereby impairing mitochondrial function and inducing cell apoptosis. More importantly, TPPM-Au is capable of having superior tumor-penetrating, excellent photothermal and photoacoustic properties, endowing it with the ability to inhibit tumor growth through spatiotemporally monitorable mitochondria-targeted biometallization and photothermal therapy. The mitochondria-targeted gold biometallization theranostic platform provides insight into the application of subcellularly targeted biometallization or biomineralization in cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信