Mohammad Abul Hasan Shibly*, Md. Hasin Arman, Md. Abdus Sabur and Mohammad Amir Hossain Bhuiyan,
{"title":"来自剑兰杂交植物的农业废弃物:碱性处理对用于聚合物复合材料的新型天然纤维素纤维的影响","authors":"Mohammad Abul Hasan Shibly*, Md. Hasin Arman, Md. Abdus Sabur and Mohammad Amir Hossain Bhuiyan, ","doi":"10.1021/acssusresmgt.4c0034810.1021/acssusresmgt.4c00348","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the potentiality of <i>Gladiolus hybrida</i> leaf fibers (GHLFs) as an eco-friendly reinforcing substance for polymer-based composites. Novel natural fibers were harvested from <i>Gladiolus hybrida</i> leaves (GHL) and treated with NaOH alkali (T-GHLF) to assess their influence on physical, strength, molecular, and heat-related properties. Initially, the obtained fibers had a diameter of 0.3084 mm, which reduced to 0.2524 mm following alkali treatment. Chemical investigation indicated that the cellulose content increased to 57.16 wt %, an enhancement of 11.38% over the untreated fibers, which had a cellulose content of 51.32 wt %. The degree of crystallinity percentage of the raw and processed fibers was 57.85% and 60.82%, respectively, without significant change in the cellulose phase. The thermogravimetric analysis indicated that T-GHLF exhibited improved thermal stability up to 257.77 °C, with the kinetic activation energy (Ea) measured at 81.56 kJ/mol. Fourier transform infrared spectroscopy (FTIR) has been employed to observe the distribution of different chemical groups on the fiber surface. Scanning electron microscopy (SEM) revealed that the fibers had a roughened surface. According to tensile testing of a single fiber, the Young’s modulus values for GHLFs and T-GHLFs were 2.08 and 2.21 GPa, respectively. These evidences suggested that GHLFs exhibited characteristics comparable to those of presently used natural fibers, positioning them as a strong contender to replace organic fibers in resin matrix composites. As a result, these novel natural resources may assist in achieving the Sustainable Development Goals of the United Nations through the sustainable utilization of agricultural waste in polymer matrix composites.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 10","pages":"2314–2326 2314–2326"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agro-Waste from Gladiolus hybrida Plants: Effects of Alkaline Processing on a New Natural Cellulosic Fiber Derived for Polymer Composites\",\"authors\":\"Mohammad Abul Hasan Shibly*, Md. Hasin Arman, Md. Abdus Sabur and Mohammad Amir Hossain Bhuiyan, \",\"doi\":\"10.1021/acssusresmgt.4c0034810.1021/acssusresmgt.4c00348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the potentiality of <i>Gladiolus hybrida</i> leaf fibers (GHLFs) as an eco-friendly reinforcing substance for polymer-based composites. Novel natural fibers were harvested from <i>Gladiolus hybrida</i> leaves (GHL) and treated with NaOH alkali (T-GHLF) to assess their influence on physical, strength, molecular, and heat-related properties. Initially, the obtained fibers had a diameter of 0.3084 mm, which reduced to 0.2524 mm following alkali treatment. Chemical investigation indicated that the cellulose content increased to 57.16 wt %, an enhancement of 11.38% over the untreated fibers, which had a cellulose content of 51.32 wt %. The degree of crystallinity percentage of the raw and processed fibers was 57.85% and 60.82%, respectively, without significant change in the cellulose phase. The thermogravimetric analysis indicated that T-GHLF exhibited improved thermal stability up to 257.77 °C, with the kinetic activation energy (Ea) measured at 81.56 kJ/mol. Fourier transform infrared spectroscopy (FTIR) has been employed to observe the distribution of different chemical groups on the fiber surface. Scanning electron microscopy (SEM) revealed that the fibers had a roughened surface. According to tensile testing of a single fiber, the Young’s modulus values for GHLFs and T-GHLFs were 2.08 and 2.21 GPa, respectively. These evidences suggested that GHLFs exhibited characteristics comparable to those of presently used natural fibers, positioning them as a strong contender to replace organic fibers in resin matrix composites. As a result, these novel natural resources may assist in achieving the Sustainable Development Goals of the United Nations through the sustainable utilization of agricultural waste in polymer matrix composites.</p>\",\"PeriodicalId\":100015,\"journal\":{\"name\":\"ACS Sustainable Resource Management\",\"volume\":\"1 10\",\"pages\":\"2314–2326 2314–2326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Resource Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agro-Waste from Gladiolus hybrida Plants: Effects of Alkaline Processing on a New Natural Cellulosic Fiber Derived for Polymer Composites
This study investigates the potentiality of Gladiolus hybrida leaf fibers (GHLFs) as an eco-friendly reinforcing substance for polymer-based composites. Novel natural fibers were harvested from Gladiolus hybrida leaves (GHL) and treated with NaOH alkali (T-GHLF) to assess their influence on physical, strength, molecular, and heat-related properties. Initially, the obtained fibers had a diameter of 0.3084 mm, which reduced to 0.2524 mm following alkali treatment. Chemical investigation indicated that the cellulose content increased to 57.16 wt %, an enhancement of 11.38% over the untreated fibers, which had a cellulose content of 51.32 wt %. The degree of crystallinity percentage of the raw and processed fibers was 57.85% and 60.82%, respectively, without significant change in the cellulose phase. The thermogravimetric analysis indicated that T-GHLF exhibited improved thermal stability up to 257.77 °C, with the kinetic activation energy (Ea) measured at 81.56 kJ/mol. Fourier transform infrared spectroscopy (FTIR) has been employed to observe the distribution of different chemical groups on the fiber surface. Scanning electron microscopy (SEM) revealed that the fibers had a roughened surface. According to tensile testing of a single fiber, the Young’s modulus values for GHLFs and T-GHLFs were 2.08 and 2.21 GPa, respectively. These evidences suggested that GHLFs exhibited characteristics comparable to those of presently used natural fibers, positioning them as a strong contender to replace organic fibers in resin matrix composites. As a result, these novel natural resources may assist in achieving the Sustainable Development Goals of the United Nations through the sustainable utilization of agricultural waste in polymer matrix composites.