用于离子通道机理研究的遗传密码扩展:化学与生物学的(非)自然结合

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daniel T. Infield, Miranda E. Schene, Jason D. Galpin and Christopher A. Ahern*, 
{"title":"用于离子通道机理研究的遗传密码扩展:化学与生物学的(非)自然结合","authors":"Daniel T. Infield,&nbsp;Miranda E. Schene,&nbsp;Jason D. Galpin and Christopher A. Ahern*,&nbsp;","doi":"10.1021/acs.chemrev.4c0030610.1021/acs.chemrev.4c00306","DOIUrl":null,"url":null,"abstract":"<p >Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"124 20","pages":"11523–11543 11523–11543"},"PeriodicalIF":51.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.4c00306","citationCount":"0","resultStr":"{\"title\":\"Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology\",\"authors\":\"Daniel T. Infield,&nbsp;Miranda E. Schene,&nbsp;Jason D. Galpin and Christopher A. Ahern*,&nbsp;\",\"doi\":\"10.1021/acs.chemrev.4c0030610.1021/acs.chemrev.4c00306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"124 20\",\"pages\":\"11523–11543 11523–11543\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.4c00306\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00306\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子通道通过催化电荷的跨膜流动,在生物学和人类健康中发挥着核心作用。这些蛋白质是遗传密码扩增(GCE)方法的理想目标,因为可以通过微量蛋白质测量离子通道活性,并通过严格、成熟的生物物理方法分析所得数据。在理想情况下,通过 GCE 对合成的非规范氨基酸进行编码,实验者可以提出传统方法无法提出的问题。因此,GCE 已成功应用于多种配体和电压门控通道,并获得了大量的结构、功能和药理学数据。在此,我们对应用于离子通道的 GCE 进行了全面总结。我们首先概述了在通道中编码非规范氨基酸的方法,然后描述了 GCE 用于光化学(交联;笼式氨基酸)和原子诱变(电荷和芳香性的同调;骨架突变)的机理研究。最后,我们将介绍荧光氨基酸编码用于蛋白质构象动态实时研究的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology

Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信