Lu Zhang, Fangyuan Chai, Haibo Dong, Yali Bao, Ke Yan, Shuang Min, Yuke Yao, Shun Li, Yi Liu, Tao Gao*, Jianglin Wang* and Yujiao Liu*,
{"title":"用于线粒体成像和癌症协同治疗的香豆素基 ACQ-AIE 转换光敏剂","authors":"Lu Zhang, Fangyuan Chai, Haibo Dong, Yali Bao, Ke Yan, Shuang Min, Yuke Yao, Shun Li, Yi Liu, Tao Gao*, Jianglin Wang* and Yujiao Liu*, ","doi":"10.1021/acs.jpclett.4c0224710.1021/acs.jpclett.4c02247","DOIUrl":null,"url":null,"abstract":"<p >Most of the traditional fluorescent molecules have the advantages of high fluorescence quantum yield, good stability, and excellent structural adjustability, but they exhibit the characteristics of fluorescence quenching caused by aggregation, which restricts their application in aqueous solutions or solids. The excellent luminescence properties and photosensitive potential of aggregation-induced emission (AIE) materials in a condensed state have made them widely concerned in the scientific research field, so it is very challenging to regulate the transformation of traditional aggregation-caused quenching (ACQ) fluorophores into AIE fluorophores. In this study, the traditional coumarin fluorophore was used as a matrix. After conjugating the triphenylamine AIE group, the triphenylphosphine cation was linked through the alkyl chain to obtain a molecular probe <b>NCTPP</b> with excellent AIE characteristic, water solubility, mitochondrial green light imaging, chemotherapy and photodynamic therapy capabilities. As far as we know, it was the first time that the photosensitivity of coumarin fluorescent molecules was imparted by the ACQ-AIE conversion method.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 43","pages":"10866–10872 10866–10872"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coumarin-Based ACQ-AIE Conversion Photosensitizer for Mitochondrial Imaging and Synergistic Cancer Therapy\",\"authors\":\"Lu Zhang, Fangyuan Chai, Haibo Dong, Yali Bao, Ke Yan, Shuang Min, Yuke Yao, Shun Li, Yi Liu, Tao Gao*, Jianglin Wang* and Yujiao Liu*, \",\"doi\":\"10.1021/acs.jpclett.4c0224710.1021/acs.jpclett.4c02247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Most of the traditional fluorescent molecules have the advantages of high fluorescence quantum yield, good stability, and excellent structural adjustability, but they exhibit the characteristics of fluorescence quenching caused by aggregation, which restricts their application in aqueous solutions or solids. The excellent luminescence properties and photosensitive potential of aggregation-induced emission (AIE) materials in a condensed state have made them widely concerned in the scientific research field, so it is very challenging to regulate the transformation of traditional aggregation-caused quenching (ACQ) fluorophores into AIE fluorophores. In this study, the traditional coumarin fluorophore was used as a matrix. After conjugating the triphenylamine AIE group, the triphenylphosphine cation was linked through the alkyl chain to obtain a molecular probe <b>NCTPP</b> with excellent AIE characteristic, water solubility, mitochondrial green light imaging, chemotherapy and photodynamic therapy capabilities. As far as we know, it was the first time that the photosensitivity of coumarin fluorescent molecules was imparted by the ACQ-AIE conversion method.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"15 43\",\"pages\":\"10866–10872 10866–10872\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02247\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02247","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Coumarin-Based ACQ-AIE Conversion Photosensitizer for Mitochondrial Imaging and Synergistic Cancer Therapy
Most of the traditional fluorescent molecules have the advantages of high fluorescence quantum yield, good stability, and excellent structural adjustability, but they exhibit the characteristics of fluorescence quenching caused by aggregation, which restricts their application in aqueous solutions or solids. The excellent luminescence properties and photosensitive potential of aggregation-induced emission (AIE) materials in a condensed state have made them widely concerned in the scientific research field, so it is very challenging to regulate the transformation of traditional aggregation-caused quenching (ACQ) fluorophores into AIE fluorophores. In this study, the traditional coumarin fluorophore was used as a matrix. After conjugating the triphenylamine AIE group, the triphenylphosphine cation was linked through the alkyl chain to obtain a molecular probe NCTPP with excellent AIE characteristic, water solubility, mitochondrial green light imaging, chemotherapy and photodynamic therapy capabilities. As far as we know, it was the first time that the photosensitivity of coumarin fluorescent molecules was imparted by the ACQ-AIE conversion method.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.