Archana Singh, Kalpesh Nath Yajnik, Kanakachari Mogilicherla, Indrakant K Singh
{"title":"解密生长调节剂在增强植物免疫力对抗食草动物方面的作用。","authors":"Archana Singh, Kalpesh Nath Yajnik, Kanakachari Mogilicherla, Indrakant K Singh","doi":"10.1111/ppl.14604","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are central to global food production, and the pursuit of sustainability aims to enhance or preserve food quality while safeguarding the environment. Due to their immobility, plants are unable to evade unfavourable climatic setups or interactions with other living creatures. Upon their interaction with insect herbivores, plants face biotic stress, which is a constant challenge for plants, causing molecular, physiological, and biochemical changes and reducing their productivity. To combat biotic stress caused by herbivores, plants have evolved intricate defence mechanisms through growth regulators such as auxins, cytokinins, gibberellins, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), strigolactones and brassinosteroids. The intricate network of specific proteins, metabolites and certain phytohormones orchestrates plant defensive reactions, leading to their skilful coordination in responding to insect attacks. Comprehending the defence mechanisms holds the key to mitigating significant crop and economic losses. This review entails a comprehensive analysis of the role of growth regulators in enhancing plant immunity against herbivory, highlighting the substantial efforts by the scientific community to manage and mitigate damages from biotic stress in plants, ultimately contributing to the advancement of sustainable agriculture.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14604"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the role of growth regulators in enhancing plant immunity against herbivory.\",\"authors\":\"Archana Singh, Kalpesh Nath Yajnik, Kanakachari Mogilicherla, Indrakant K Singh\",\"doi\":\"10.1111/ppl.14604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants are central to global food production, and the pursuit of sustainability aims to enhance or preserve food quality while safeguarding the environment. Due to their immobility, plants are unable to evade unfavourable climatic setups or interactions with other living creatures. Upon their interaction with insect herbivores, plants face biotic stress, which is a constant challenge for plants, causing molecular, physiological, and biochemical changes and reducing their productivity. To combat biotic stress caused by herbivores, plants have evolved intricate defence mechanisms through growth regulators such as auxins, cytokinins, gibberellins, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), strigolactones and brassinosteroids. The intricate network of specific proteins, metabolites and certain phytohormones orchestrates plant defensive reactions, leading to their skilful coordination in responding to insect attacks. Comprehending the defence mechanisms holds the key to mitigating significant crop and economic losses. This review entails a comprehensive analysis of the role of growth regulators in enhancing plant immunity against herbivory, highlighting the substantial efforts by the scientific community to manage and mitigate damages from biotic stress in plants, ultimately contributing to the advancement of sustainable agriculture.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 6\",\"pages\":\"e14604\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14604\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14604","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Deciphering the role of growth regulators in enhancing plant immunity against herbivory.
Plants are central to global food production, and the pursuit of sustainability aims to enhance or preserve food quality while safeguarding the environment. Due to their immobility, plants are unable to evade unfavourable climatic setups or interactions with other living creatures. Upon their interaction with insect herbivores, plants face biotic stress, which is a constant challenge for plants, causing molecular, physiological, and biochemical changes and reducing their productivity. To combat biotic stress caused by herbivores, plants have evolved intricate defence mechanisms through growth regulators such as auxins, cytokinins, gibberellins, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), strigolactones and brassinosteroids. The intricate network of specific proteins, metabolites and certain phytohormones orchestrates plant defensive reactions, leading to their skilful coordination in responding to insect attacks. Comprehending the defence mechanisms holds the key to mitigating significant crop and economic losses. This review entails a comprehensive analysis of the role of growth regulators in enhancing plant immunity against herbivory, highlighting the substantial efforts by the scientific community to manage and mitigate damages from biotic stress in plants, ultimately contributing to the advancement of sustainable agriculture.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.