基于差异化特征提取的未知运行条件下轴承故障诊断方法。

ISA transactions Pub Date : 2025-01-01 Epub Date: 2024-10-26 DOI:10.1016/j.isatra.2024.10.024
Wei Cao, Zong Meng, Jimeng Li, Yang Guan, Jingjing Fan, Huihui He, Fengjie Fan
{"title":"基于差异化特征提取的未知运行条件下轴承故障诊断方法。","authors":"Wei Cao, Zong Meng, Jimeng Li, Yang Guan, Jingjing Fan, Huihui He, Fengjie Fan","doi":"10.1016/j.isatra.2024.10.024","DOIUrl":null,"url":null,"abstract":"<p><p>Under unknown operating conditions, the domain generalization approach based on domain metrics is commonly used for rolling bearing fault diagnostics. Nevertheless, in the event of equipment failure under unknown operating conditions, focusing solely on the transferable characteristics across domains may result in the unintentional neglect of domain-specific features. To address the problems mentioned, the present study introduces a feature decomposition learning method that simultaneously extracts inter-domain transferable and domain-specific features. This method aims to obtain richer feature information by constructing different feature extractors. For the extraction of transferable features, a joint metric method based on central moment differences is devised. A difference maximization method is employed to extract domain-specific features. The experimental findings demonstrate that the proposed technique exhibits greater defect detection capacity across two datasets.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":"468-478"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bearing fault diagnosis method for unknown operating conditions based on differentiated feature extraction.\",\"authors\":\"Wei Cao, Zong Meng, Jimeng Li, Yang Guan, Jingjing Fan, Huihui He, Fengjie Fan\",\"doi\":\"10.1016/j.isatra.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under unknown operating conditions, the domain generalization approach based on domain metrics is commonly used for rolling bearing fault diagnostics. Nevertheless, in the event of equipment failure under unknown operating conditions, focusing solely on the transferable characteristics across domains may result in the unintentional neglect of domain-specific features. To address the problems mentioned, the present study introduces a feature decomposition learning method that simultaneously extracts inter-domain transferable and domain-specific features. This method aims to obtain richer feature information by constructing different feature extractors. For the extraction of transferable features, a joint metric method based on central moment differences is devised. A difference maximization method is employed to extract domain-specific features. The experimental findings demonstrate that the proposed technique exhibits greater defect detection capacity across two datasets.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"468-478\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.10.024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.10.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在未知运行条件下,基于域指标的域泛化方法通常用于滚动轴承故障诊断。然而,在未知运行条件下发生设备故障时,只关注跨领域的可迁移特征可能会无意中忽略特定领域的特征。为解决上述问题,本研究引入了一种特征分解学习方法,可同时提取跨领域可转移特征和特定领域特征。该方法旨在通过构建不同的特征提取器来获取更丰富的特征信息。为了提取可转移特征,我们设计了一种基于中心矩差的联合度量方法。采用差值最大化方法提取特定领域的特征。实验结果表明,所提出的技术在两个数据集上表现出更强的缺陷检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bearing fault diagnosis method for unknown operating conditions based on differentiated feature extraction.

Under unknown operating conditions, the domain generalization approach based on domain metrics is commonly used for rolling bearing fault diagnostics. Nevertheless, in the event of equipment failure under unknown operating conditions, focusing solely on the transferable characteristics across domains may result in the unintentional neglect of domain-specific features. To address the problems mentioned, the present study introduces a feature decomposition learning method that simultaneously extracts inter-domain transferable and domain-specific features. This method aims to obtain richer feature information by constructing different feature extractors. For the extraction of transferable features, a joint metric method based on central moment differences is devised. A difference maximization method is employed to extract domain-specific features. The experimental findings demonstrate that the proposed technique exhibits greater defect detection capacity across two datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信