Jessica L. Watson , Kaymann Cho , Kelly Grisedale , Jodie Ward , Dennis McNevin
{"title":"具有欧洲血统的澳大利亚人口中身份信息遗传标记的特征。","authors":"Jessica L. Watson , Kaymann Cho , Kelly Grisedale , Jodie Ward , Dennis McNevin","doi":"10.1016/j.fsigen.2024.103169","DOIUrl":null,"url":null,"abstract":"<div><div>Identity-informative single nucleotide polymorphisms (iiSNPs) are valuable genetic markers for human identification and kinship testing in forensic casework, especially when the quality and quantity of DNA evidence is not suitable for routine short tandem repeat (STR) profiling. This study analysed 105 buccal samples representing the Australian population with European ancestry in order to assign allele frequencies and conduct population genetic analyses for 94 iiSNPs and 20 STRs. The markers were assessed by calculating relevant forensic statistics and testing for deviations from Hardy-Weinberg and linkage equilibrium. No linkage of statistical significance was observed between any of the pair-wise combinations of the combined 114 identity-informative markers and only one STR exhibited deviation from Hardy-Weinberg equilibrium (D8S1179). The probability of matching genotypes being observed within this population was of the order of 10<sup>−23</sup> for STRs, 10<sup>−38</sup> for iiSNPs and 10<sup>−60</sup> for the combined identity-informative marker panel, improving the ability to discriminate between individuals when calculating likelihood ratios in direct or indirect matching scenarios. Further, the addition of iiSNPs will facilitate identifications when suboptimal STR profiles are recovered from compromised or challenging samples and aid comparisons to genetic relatives for familial or kinship testing.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"74 ","pages":"Article 103169"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterisation of identity-informative genetic markers in the Australian population with European ancestry\",\"authors\":\"Jessica L. Watson , Kaymann Cho , Kelly Grisedale , Jodie Ward , Dennis McNevin\",\"doi\":\"10.1016/j.fsigen.2024.103169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identity-informative single nucleotide polymorphisms (iiSNPs) are valuable genetic markers for human identification and kinship testing in forensic casework, especially when the quality and quantity of DNA evidence is not suitable for routine short tandem repeat (STR) profiling. This study analysed 105 buccal samples representing the Australian population with European ancestry in order to assign allele frequencies and conduct population genetic analyses for 94 iiSNPs and 20 STRs. The markers were assessed by calculating relevant forensic statistics and testing for deviations from Hardy-Weinberg and linkage equilibrium. No linkage of statistical significance was observed between any of the pair-wise combinations of the combined 114 identity-informative markers and only one STR exhibited deviation from Hardy-Weinberg equilibrium (D8S1179). The probability of matching genotypes being observed within this population was of the order of 10<sup>−23</sup> for STRs, 10<sup>−38</sup> for iiSNPs and 10<sup>−60</sup> for the combined identity-informative marker panel, improving the ability to discriminate between individuals when calculating likelihood ratios in direct or indirect matching scenarios. Further, the addition of iiSNPs will facilitate identifications when suboptimal STR profiles are recovered from compromised or challenging samples and aid comparisons to genetic relatives for familial or kinship testing.</div></div>\",\"PeriodicalId\":50435,\"journal\":{\"name\":\"Forensic Science International-Genetics\",\"volume\":\"74 \",\"pages\":\"Article 103169\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872497324001650\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497324001650","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Characterisation of identity-informative genetic markers in the Australian population with European ancestry
Identity-informative single nucleotide polymorphisms (iiSNPs) are valuable genetic markers for human identification and kinship testing in forensic casework, especially when the quality and quantity of DNA evidence is not suitable for routine short tandem repeat (STR) profiling. This study analysed 105 buccal samples representing the Australian population with European ancestry in order to assign allele frequencies and conduct population genetic analyses for 94 iiSNPs and 20 STRs. The markers were assessed by calculating relevant forensic statistics and testing for deviations from Hardy-Weinberg and linkage equilibrium. No linkage of statistical significance was observed between any of the pair-wise combinations of the combined 114 identity-informative markers and only one STR exhibited deviation from Hardy-Weinberg equilibrium (D8S1179). The probability of matching genotypes being observed within this population was of the order of 10−23 for STRs, 10−38 for iiSNPs and 10−60 for the combined identity-informative marker panel, improving the ability to discriminate between individuals when calculating likelihood ratios in direct or indirect matching scenarios. Further, the addition of iiSNPs will facilitate identifications when suboptimal STR profiles are recovered from compromised or challenging samples and aid comparisons to genetic relatives for familial or kinship testing.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.