Jiyuan Zou, Zhikang Su, Wen Ren, Yunxin Ye, Xuechao Yang, Tao Luo, Li Yang, Lvhua Guo
{"title":"二维 \"纳米罐 \"通过光动力级联释放 \"气体炸弹\",促进糖尿病伤口愈合","authors":"Jiyuan Zou, Zhikang Su, Wen Ren, Yunxin Ye, Xuechao Yang, Tao Luo, Li Yang, Lvhua Guo","doi":"10.34133/bmr.0100","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of multidrug-resistant (MDR) bacterial infections, particularly in diabetic wounds, represents a major challenge in clinical care due to their high mortality rate. Despite the continued use of antibiotics as the primary clinical treatment for diabetic wounds, there is an urgent need to develop antibiotic-free therapeutic strategies to combat MDR bacteria, given the limitations and resistance of antibiotics. In this study, a \"nanotank\", MXene@MOF@CORM-401 (MMC), was designed to target bacteria. The basis of this approach is the combination of 2-dimensional transition metal carbides/carbon nitrides (MXene), metal-organic frameworks (MOFs), and carbon monoxide-releasing molecules (CORMs). MMCs exhibit photothermal and photodynamic properties upon irradiation with near-infrared laser. The photodynamic effect generates a substantial quantity of reactive oxygen species, which subsequently triggers the release of carbon monoxide in a \"gas bombs\"-like manner. In vitro and in vivo experiments have demonstrated that MMC is not only biocompatible but also exhibits robust antimicrobial properties and accelerates diabetic wound healing. Consequently, this innovative 2-dimensional \"nanotank\" represents a promising alternative to conventional antibiotic therapies for the treatment of MDR bacterial infections in the future.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0100"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional \\\"Nanotanks\\\" Release \\\"Gas Bombs\\\" through Photodynamic Cascades to Promote Diabetic Wound Healing.\",\"authors\":\"Jiyuan Zou, Zhikang Su, Wen Ren, Yunxin Ye, Xuechao Yang, Tao Luo, Li Yang, Lvhua Guo\",\"doi\":\"10.34133/bmr.0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of multidrug-resistant (MDR) bacterial infections, particularly in diabetic wounds, represents a major challenge in clinical care due to their high mortality rate. Despite the continued use of antibiotics as the primary clinical treatment for diabetic wounds, there is an urgent need to develop antibiotic-free therapeutic strategies to combat MDR bacteria, given the limitations and resistance of antibiotics. In this study, a \\\"nanotank\\\", MXene@MOF@CORM-401 (MMC), was designed to target bacteria. The basis of this approach is the combination of 2-dimensional transition metal carbides/carbon nitrides (MXene), metal-organic frameworks (MOFs), and carbon monoxide-releasing molecules (CORMs). MMCs exhibit photothermal and photodynamic properties upon irradiation with near-infrared laser. The photodynamic effect generates a substantial quantity of reactive oxygen species, which subsequently triggers the release of carbon monoxide in a \\\"gas bombs\\\"-like manner. In vitro and in vivo experiments have demonstrated that MMC is not only biocompatible but also exhibits robust antimicrobial properties and accelerates diabetic wound healing. Consequently, this innovative 2-dimensional \\\"nanotank\\\" represents a promising alternative to conventional antibiotic therapies for the treatment of MDR bacterial infections in the future.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"28 \",\"pages\":\"0100\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Two-Dimensional "Nanotanks" Release "Gas Bombs" through Photodynamic Cascades to Promote Diabetic Wound Healing.
The emergence of multidrug-resistant (MDR) bacterial infections, particularly in diabetic wounds, represents a major challenge in clinical care due to their high mortality rate. Despite the continued use of antibiotics as the primary clinical treatment for diabetic wounds, there is an urgent need to develop antibiotic-free therapeutic strategies to combat MDR bacteria, given the limitations and resistance of antibiotics. In this study, a "nanotank", MXene@MOF@CORM-401 (MMC), was designed to target bacteria. The basis of this approach is the combination of 2-dimensional transition metal carbides/carbon nitrides (MXene), metal-organic frameworks (MOFs), and carbon monoxide-releasing molecules (CORMs). MMCs exhibit photothermal and photodynamic properties upon irradiation with near-infrared laser. The photodynamic effect generates a substantial quantity of reactive oxygen species, which subsequently triggers the release of carbon monoxide in a "gas bombs"-like manner. In vitro and in vivo experiments have demonstrated that MMC is not only biocompatible but also exhibits robust antimicrobial properties and accelerates diabetic wound healing. Consequently, this innovative 2-dimensional "nanotank" represents a promising alternative to conventional antibiotic therapies for the treatment of MDR bacterial infections in the future.