Tien-Huang Lin, Chen-Yu Wang, Chien-Chen Wu, Ching-Ting Lin
{"title":"肺炎克雷伯氏菌中 Pta-AckA 通路对 CPS 生物合成和 3 型纤毛膜表达的影响。","authors":"Tien-Huang Lin, Chen-Yu Wang, Chien-Chen Wu, Ching-Ting Lin","doi":"10.1016/j.jmii.2024.10.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Klebsiella pneumoniae is a Gram-negative bacterium that can cause infections, especially in individuals with diabetes. Recently, more hypervirulent strains have emerged, posing a threat even to healthy individuals. Understanding how K. pneumoniae regulates its virulence factors is crucial. Acetyl-phosphate (AcP) is essential for bacterial metabolism and can affect virulence factor expression. However, the role of the Pta-AckA pathway, which regulates AcP levels, in K. pneumoniae pathogenesis remains unclear.</p><p><strong>Methods: </strong>Deletion mutants lacking the pta and ackA, involved in AcP production and hydrolysis, were generated in K. pneumoniae CG43S3. Their effects on AcP levels, the patterns of global acetylated protein, capsular polysaccharide (CPS) amount, serum resistance, type 3 fimbriae expression, biofilm formation, and virulence in G. mellonella larva were assessed.</p><p><strong>Results: </strong>Deletion of ackA in K. pneumoniae CG43S3 led to AcP accumulation, while pta deletion abolished AcP synthesis when grown in TB7+1 % glucose. This pathway influenced global protein acetylation, with pta deletion decreasing acetylation and ackA deletion increasing it. Additionally, pta deletion decreased the CPS amount, serum resistance, and type 3 fimbriae expression, while ackA deletion increased these factors. Furthermore, deleting pta and ackA attenuated the infected larva's virulence and death rate.</p><p><strong>Conclusion: </strong>Our findings highlight the critical role of the Pta-AckA pathway in K. pneumoniae pathogenesis. This pathway regulates AcP levels, global protein acetylation, CPS production, serum resistance, and type 3 fimbriae expression, ultimately impacting virulence. The information provides insights into potential therapeutic targets for combating K. pneumoniae infection.</p>","PeriodicalId":56117,"journal":{"name":"Journal of Microbiology Immunology and Infection","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Pta-AckA pathway on CPS biosynthesis and type 3 fimbriae expression in Klebsiella pneumoniae.\",\"authors\":\"Tien-Huang Lin, Chen-Yu Wang, Chien-Chen Wu, Ching-Ting Lin\",\"doi\":\"10.1016/j.jmii.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Klebsiella pneumoniae is a Gram-negative bacterium that can cause infections, especially in individuals with diabetes. Recently, more hypervirulent strains have emerged, posing a threat even to healthy individuals. Understanding how K. pneumoniae regulates its virulence factors is crucial. Acetyl-phosphate (AcP) is essential for bacterial metabolism and can affect virulence factor expression. However, the role of the Pta-AckA pathway, which regulates AcP levels, in K. pneumoniae pathogenesis remains unclear.</p><p><strong>Methods: </strong>Deletion mutants lacking the pta and ackA, involved in AcP production and hydrolysis, were generated in K. pneumoniae CG43S3. Their effects on AcP levels, the patterns of global acetylated protein, capsular polysaccharide (CPS) amount, serum resistance, type 3 fimbriae expression, biofilm formation, and virulence in G. mellonella larva were assessed.</p><p><strong>Results: </strong>Deletion of ackA in K. pneumoniae CG43S3 led to AcP accumulation, while pta deletion abolished AcP synthesis when grown in TB7+1 % glucose. This pathway influenced global protein acetylation, with pta deletion decreasing acetylation and ackA deletion increasing it. Additionally, pta deletion decreased the CPS amount, serum resistance, and type 3 fimbriae expression, while ackA deletion increased these factors. Furthermore, deleting pta and ackA attenuated the infected larva's virulence and death rate.</p><p><strong>Conclusion: </strong>Our findings highlight the critical role of the Pta-AckA pathway in K. pneumoniae pathogenesis. This pathway regulates AcP levels, global protein acetylation, CPS production, serum resistance, and type 3 fimbriae expression, ultimately impacting virulence. The information provides insights into potential therapeutic targets for combating K. pneumoniae infection.</p>\",\"PeriodicalId\":56117,\"journal\":{\"name\":\"Journal of Microbiology Immunology and Infection\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microbiology Immunology and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmii.2024.10.002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology Immunology and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jmii.2024.10.002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Impacts of Pta-AckA pathway on CPS biosynthesis and type 3 fimbriae expression in Klebsiella pneumoniae.
Background: Klebsiella pneumoniae is a Gram-negative bacterium that can cause infections, especially in individuals with diabetes. Recently, more hypervirulent strains have emerged, posing a threat even to healthy individuals. Understanding how K. pneumoniae regulates its virulence factors is crucial. Acetyl-phosphate (AcP) is essential for bacterial metabolism and can affect virulence factor expression. However, the role of the Pta-AckA pathway, which regulates AcP levels, in K. pneumoniae pathogenesis remains unclear.
Methods: Deletion mutants lacking the pta and ackA, involved in AcP production and hydrolysis, were generated in K. pneumoniae CG43S3. Their effects on AcP levels, the patterns of global acetylated protein, capsular polysaccharide (CPS) amount, serum resistance, type 3 fimbriae expression, biofilm formation, and virulence in G. mellonella larva were assessed.
Results: Deletion of ackA in K. pneumoniae CG43S3 led to AcP accumulation, while pta deletion abolished AcP synthesis when grown in TB7+1 % glucose. This pathway influenced global protein acetylation, with pta deletion decreasing acetylation and ackA deletion increasing it. Additionally, pta deletion decreased the CPS amount, serum resistance, and type 3 fimbriae expression, while ackA deletion increased these factors. Furthermore, deleting pta and ackA attenuated the infected larva's virulence and death rate.
Conclusion: Our findings highlight the critical role of the Pta-AckA pathway in K. pneumoniae pathogenesis. This pathway regulates AcP levels, global protein acetylation, CPS production, serum resistance, and type 3 fimbriae expression, ultimately impacting virulence. The information provides insights into potential therapeutic targets for combating K. pneumoniae infection.
期刊介绍:
Journal of Microbiology Immunology and Infection is an open access journal, committed to disseminating information on the latest trends and advances in microbiology, immunology, infectious diseases and parasitology. Article types considered include perspectives, review articles, original articles, brief reports and correspondence.
With the aim of promoting effective and accurate scientific information, an expert panel of referees constitutes the backbone of the peer-review process in evaluating the quality and content of manuscripts submitted for publication.