Qiangjun Hao, John Schossig, Adedayo Towolawi, Kai Xu, Erwan Bayiha, Mayooran Mohanakanthan, Derek Savastano, Dhanya Jayaraman, Cheng Zhang, Ping Lu
{"title":"通过泰勒锥优化实现乙基纤维素纳米纤维的高速电纺丝。","authors":"Qiangjun Hao, John Schossig, Adedayo Towolawi, Kai Xu, Erwan Bayiha, Mayooran Mohanakanthan, Derek Savastano, Dhanya Jayaraman, Cheng Zhang, Ping Lu","doi":"10.1021/acsaenm.4c00527","DOIUrl":null,"url":null,"abstract":"<p><p>Ethyl cellulose (EC) is one of the most widely used cellulose derivatives. Nevertheless, challenges such as the formation of beaded fibers, low yield, and nonporous internal structure persist in electrospinning, limiting functional improvements and industrial applications. This study invented a groundbreaking high-speed electrospinning technique through sheath liquid assistance to optimize the Taylor cone, dramatically enhancing the yield, morphology, and formation of porous structures of EC nanofibers beyond what has been seen in the literature to date. Our study emphasizes the crucial role of the sheath liquid's physical and chemical properties in controlling the morphology and diameter of EC nanofibers. It was discovered that highly polar and viscous sheath liquids led to the formation of beaded structures. Most importantly, the sheath liquid-assisted method substantially increased the ejection rate of the EC solution tens and hundreds of times compared to the current low-speed electrospinning method (0.1-1 mL/h) by refining the shape of the Taylor cone and resolving low productivity challenges in conventional nanofiber production. Meanwhile, increasing the flow rate of the EC or the sheath liquid accelerated the phase separation of EC solutions, thereby promoting the formation of porous structures in EC nanofibers. A pronounced porous structure was observed when the core EC flow rate reached 25 mL/h or the sheath chloroform flow rate reached 20 mL/h. Furthermore, our sheath liquid-assisted high-speed electrospinning technique demonstrated universal applicability to ECs with varying molecular weights. This study comprehensively addressed challenges in controlling the yield, morphology, and internal structure of EC nanofibers through sheath-solution-assisted high-speed electrospinning technology. These findings provide an innovative approach to developing next-generation electrospinning technologies to enhance the yield and properties of natural polymers for sustainability.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"2 10","pages":"2454-2467"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519837/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-Speed Electrospinning of Ethyl Cellulose Nanofibers via Taylor Cone Optimization.\",\"authors\":\"Qiangjun Hao, John Schossig, Adedayo Towolawi, Kai Xu, Erwan Bayiha, Mayooran Mohanakanthan, Derek Savastano, Dhanya Jayaraman, Cheng Zhang, Ping Lu\",\"doi\":\"10.1021/acsaenm.4c00527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ethyl cellulose (EC) is one of the most widely used cellulose derivatives. Nevertheless, challenges such as the formation of beaded fibers, low yield, and nonporous internal structure persist in electrospinning, limiting functional improvements and industrial applications. This study invented a groundbreaking high-speed electrospinning technique through sheath liquid assistance to optimize the Taylor cone, dramatically enhancing the yield, morphology, and formation of porous structures of EC nanofibers beyond what has been seen in the literature to date. Our study emphasizes the crucial role of the sheath liquid's physical and chemical properties in controlling the morphology and diameter of EC nanofibers. It was discovered that highly polar and viscous sheath liquids led to the formation of beaded structures. Most importantly, the sheath liquid-assisted method substantially increased the ejection rate of the EC solution tens and hundreds of times compared to the current low-speed electrospinning method (0.1-1 mL/h) by refining the shape of the Taylor cone and resolving low productivity challenges in conventional nanofiber production. Meanwhile, increasing the flow rate of the EC or the sheath liquid accelerated the phase separation of EC solutions, thereby promoting the formation of porous structures in EC nanofibers. A pronounced porous structure was observed when the core EC flow rate reached 25 mL/h or the sheath chloroform flow rate reached 20 mL/h. Furthermore, our sheath liquid-assisted high-speed electrospinning technique demonstrated universal applicability to ECs with varying molecular weights. This study comprehensively addressed challenges in controlling the yield, morphology, and internal structure of EC nanofibers through sheath-solution-assisted high-speed electrospinning technology. These findings provide an innovative approach to developing next-generation electrospinning technologies to enhance the yield and properties of natural polymers for sustainability.</p>\",\"PeriodicalId\":55639,\"journal\":{\"name\":\"ACS Applied Engineering Materials\",\"volume\":\"2 10\",\"pages\":\"2454-2467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519837/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsaenm.4c00527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsaenm.4c00527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
High-Speed Electrospinning of Ethyl Cellulose Nanofibers via Taylor Cone Optimization.
Ethyl cellulose (EC) is one of the most widely used cellulose derivatives. Nevertheless, challenges such as the formation of beaded fibers, low yield, and nonporous internal structure persist in electrospinning, limiting functional improvements and industrial applications. This study invented a groundbreaking high-speed electrospinning technique through sheath liquid assistance to optimize the Taylor cone, dramatically enhancing the yield, morphology, and formation of porous structures of EC nanofibers beyond what has been seen in the literature to date. Our study emphasizes the crucial role of the sheath liquid's physical and chemical properties in controlling the morphology and diameter of EC nanofibers. It was discovered that highly polar and viscous sheath liquids led to the formation of beaded structures. Most importantly, the sheath liquid-assisted method substantially increased the ejection rate of the EC solution tens and hundreds of times compared to the current low-speed electrospinning method (0.1-1 mL/h) by refining the shape of the Taylor cone and resolving low productivity challenges in conventional nanofiber production. Meanwhile, increasing the flow rate of the EC or the sheath liquid accelerated the phase separation of EC solutions, thereby promoting the formation of porous structures in EC nanofibers. A pronounced porous structure was observed when the core EC flow rate reached 25 mL/h or the sheath chloroform flow rate reached 20 mL/h. Furthermore, our sheath liquid-assisted high-speed electrospinning technique demonstrated universal applicability to ECs with varying molecular weights. This study comprehensively addressed challenges in controlling the yield, morphology, and internal structure of EC nanofibers through sheath-solution-assisted high-speed electrospinning technology. These findings provide an innovative approach to developing next-generation electrospinning technologies to enhance the yield and properties of natural polymers for sustainability.
期刊介绍:
ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.