Alaa Albashayreh, Keela Herr, Weiguo Fan, W Nick Street, Stephanie Gilbertson-White
{"title":"利用自然语言处理和高维临床笔记检测护理目标和代理指定对话。","authors":"Alaa Albashayreh, Keela Herr, Weiguo Fan, W Nick Street, Stephanie Gilbertson-White","doi":"10.1177/10547738241292657","DOIUrl":null,"url":null,"abstract":"<p><p>Advance care planning, involving goals-of-care and surrogate-designation conversations, is crucial for patient-centered care. However, determining the optimal timing and participants for these conversations remains challenging. This study explored the frequency, timing, and predictors of documenting two advance care planning elements, goals-of-care and surrogate-designation conversations, in clinical notes for patients with advanced illness. In this retrospective observational study, we leveraged high-dimensional data and natural language processing (NLP) to analyze clinical notes and predict the presence or absence of advance care planning conversations. We included notes for patients treated at a Midwestern United States hospital who had advanced chronic conditions and eventually passed away. We manually labeled a gold-standard dataset (<i>n</i> = 913 notes) for the presence or absence of advance care planning conversations at the note level, achieving excellent inter-annotator agreement (90.5%). Training and testing four NLP models to detect goals-of-care and surrogate-designation conversations revealed that a transformer-based model (Bidirectional Encoder Representations from Transformers [BERT]) achieved the highest accuracy, with an F1 score of 93.6. We then deployed the BERT model to a high-dimensional corpus of 247,241 notes for 4,341 patients and detected goals-of-care and surrogate-designation conversations in the records of 85% and 60% of patients, respectively. Temporal analysis revealed that goals-of-care and surrogate-designation conversations were first documented at medians 28 and 8 days before death, respectively. Patient characteristics and referral to specialty palliative care emerged as significant factors associated with documenting these conversations. Our findings demonstrate the potential of NLP, particularly Transformer-based models like BERT, to accurately detect goals-of-care and surrogate-designation conversations in clinical narratives. This study identified significant temporal patterns, including late documentation, and patient characteristics associated with these conversations. It highlights the value of high-dimensional data in enhancing our understanding of advance care planning and offers insights for improving patient-centered care in clinical settings. Future research should explore the integration of these models into clinical workflows to facilitate timely and effective advance care planning discussions.</p>","PeriodicalId":50677,"journal":{"name":"Clinical Nursing Research","volume":" ","pages":"10547738241292657"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Natural Language Processing and High-Dimensional Clinical Notes to Detect Goals-of-Care and Surrogate-Designation Conversations.\",\"authors\":\"Alaa Albashayreh, Keela Herr, Weiguo Fan, W Nick Street, Stephanie Gilbertson-White\",\"doi\":\"10.1177/10547738241292657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advance care planning, involving goals-of-care and surrogate-designation conversations, is crucial for patient-centered care. However, determining the optimal timing and participants for these conversations remains challenging. This study explored the frequency, timing, and predictors of documenting two advance care planning elements, goals-of-care and surrogate-designation conversations, in clinical notes for patients with advanced illness. In this retrospective observational study, we leveraged high-dimensional data and natural language processing (NLP) to analyze clinical notes and predict the presence or absence of advance care planning conversations. We included notes for patients treated at a Midwestern United States hospital who had advanced chronic conditions and eventually passed away. We manually labeled a gold-standard dataset (<i>n</i> = 913 notes) for the presence or absence of advance care planning conversations at the note level, achieving excellent inter-annotator agreement (90.5%). Training and testing four NLP models to detect goals-of-care and surrogate-designation conversations revealed that a transformer-based model (Bidirectional Encoder Representations from Transformers [BERT]) achieved the highest accuracy, with an F1 score of 93.6. We then deployed the BERT model to a high-dimensional corpus of 247,241 notes for 4,341 patients and detected goals-of-care and surrogate-designation conversations in the records of 85% and 60% of patients, respectively. Temporal analysis revealed that goals-of-care and surrogate-designation conversations were first documented at medians 28 and 8 days before death, respectively. Patient characteristics and referral to specialty palliative care emerged as significant factors associated with documenting these conversations. Our findings demonstrate the potential of NLP, particularly Transformer-based models like BERT, to accurately detect goals-of-care and surrogate-designation conversations in clinical narratives. This study identified significant temporal patterns, including late documentation, and patient characteristics associated with these conversations. It highlights the value of high-dimensional data in enhancing our understanding of advance care planning and offers insights for improving patient-centered care in clinical settings. Future research should explore the integration of these models into clinical workflows to facilitate timely and effective advance care planning discussions.</p>\",\"PeriodicalId\":50677,\"journal\":{\"name\":\"Clinical Nursing Research\",\"volume\":\" \",\"pages\":\"10547738241292657\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Nursing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10547738241292657\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NURSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Nursing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10547738241292657","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NURSING","Score":null,"Total":0}
Harnessing Natural Language Processing and High-Dimensional Clinical Notes to Detect Goals-of-Care and Surrogate-Designation Conversations.
Advance care planning, involving goals-of-care and surrogate-designation conversations, is crucial for patient-centered care. However, determining the optimal timing and participants for these conversations remains challenging. This study explored the frequency, timing, and predictors of documenting two advance care planning elements, goals-of-care and surrogate-designation conversations, in clinical notes for patients with advanced illness. In this retrospective observational study, we leveraged high-dimensional data and natural language processing (NLP) to analyze clinical notes and predict the presence or absence of advance care planning conversations. We included notes for patients treated at a Midwestern United States hospital who had advanced chronic conditions and eventually passed away. We manually labeled a gold-standard dataset (n = 913 notes) for the presence or absence of advance care planning conversations at the note level, achieving excellent inter-annotator agreement (90.5%). Training and testing four NLP models to detect goals-of-care and surrogate-designation conversations revealed that a transformer-based model (Bidirectional Encoder Representations from Transformers [BERT]) achieved the highest accuracy, with an F1 score of 93.6. We then deployed the BERT model to a high-dimensional corpus of 247,241 notes for 4,341 patients and detected goals-of-care and surrogate-designation conversations in the records of 85% and 60% of patients, respectively. Temporal analysis revealed that goals-of-care and surrogate-designation conversations were first documented at medians 28 and 8 days before death, respectively. Patient characteristics and referral to specialty palliative care emerged as significant factors associated with documenting these conversations. Our findings demonstrate the potential of NLP, particularly Transformer-based models like BERT, to accurately detect goals-of-care and surrogate-designation conversations in clinical narratives. This study identified significant temporal patterns, including late documentation, and patient characteristics associated with these conversations. It highlights the value of high-dimensional data in enhancing our understanding of advance care planning and offers insights for improving patient-centered care in clinical settings. Future research should explore the integration of these models into clinical workflows to facilitate timely and effective advance care planning discussions.
期刊介绍:
Clinical Nursing Research (CNR) is a peer-reviewed quarterly journal that addresses issues of clinical research that are meaningful to practicing nurses, providing an international forum to encourage discussion among clinical practitioners, enhance clinical practice by pinpointing potential clinical applications of the latest scholarly research, and disseminate research findings of particular interest to practicing nurses. This journal is a member of the Committee on Publication Ethics (COPE).