{"title":"ANXA1 增强人牙髓干细胞的血管生成潜能","authors":"Xiaocao Ma, Bichun Zhao, Chao Wang, Manqiang Sun, Yawen Dai, Lingling E, Mingzhu Gao, Xiangwei Liu, Yali Jia, Wen Yue, Hongchen Liu","doi":"10.1155/2024/7045341","DOIUrl":null,"url":null,"abstract":"<p><p>Dental trauma is highly prevalent in children and adolescents, alongside tooth decay. This condition mainly induces pulp contamination, pulp necrosis, and tooth avulsion in the clinical context. The disturbance to root growth is prone to occur in immature permanent teeth. However, conventional endodontic treatment may not achieve favorable outcomes in these cases, necessitating conducting relevant exploration. Therefore, this study was performed to examine the impact of Annexin A1 (ANXA1) on the vascular repair of dental pulp using human dental pulp stem cells (DPSCs). Specifically, RNA sequencing (RNA-Seq) and functional clustering analyses were employed to identify key genes involved in pulp regeneration. ANXA1 was detected in DPSCs and may correlate with pulp restoration. However, it remains undefined about the potential of ANXA1 to promote the angiogenetic differentiation of DPSCs. The results of this study revealed that the addition of ANXA1 significantly enhanced the secretion of vascular endothelial growth factor-A (VEGF-A) in DPSCs. Moreover, the incubation of DPSCs with ANXA1 resulted in a higher expression level of endothelial markers and promoted vessel formation through the upregulation of the phosphorylated p38 (p-p38) pathway. The in vivo results corroborated that the ANXA1 group exhibited more blood vessels and an increased ratio of positive staining for CD31. In conclusion, these findings indicate that ANXA1 enhances the in vivo and in vitro vascularization of DPSCs, and the activation of p-p38 may play a pivotal role in mediating the differentiation process.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2024 ","pages":"7045341"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524703/pdf/","citationCount":"0","resultStr":"{\"title\":\"ANXA1 Enhances the Proangiogenic Potential of Human Dental Pulp Stem Cells.\",\"authors\":\"Xiaocao Ma, Bichun Zhao, Chao Wang, Manqiang Sun, Yawen Dai, Lingling E, Mingzhu Gao, Xiangwei Liu, Yali Jia, Wen Yue, Hongchen Liu\",\"doi\":\"10.1155/2024/7045341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dental trauma is highly prevalent in children and adolescents, alongside tooth decay. This condition mainly induces pulp contamination, pulp necrosis, and tooth avulsion in the clinical context. The disturbance to root growth is prone to occur in immature permanent teeth. However, conventional endodontic treatment may not achieve favorable outcomes in these cases, necessitating conducting relevant exploration. Therefore, this study was performed to examine the impact of Annexin A1 (ANXA1) on the vascular repair of dental pulp using human dental pulp stem cells (DPSCs). Specifically, RNA sequencing (RNA-Seq) and functional clustering analyses were employed to identify key genes involved in pulp regeneration. ANXA1 was detected in DPSCs and may correlate with pulp restoration. However, it remains undefined about the potential of ANXA1 to promote the angiogenetic differentiation of DPSCs. The results of this study revealed that the addition of ANXA1 significantly enhanced the secretion of vascular endothelial growth factor-A (VEGF-A) in DPSCs. Moreover, the incubation of DPSCs with ANXA1 resulted in a higher expression level of endothelial markers and promoted vessel formation through the upregulation of the phosphorylated p38 (p-p38) pathway. The in vivo results corroborated that the ANXA1 group exhibited more blood vessels and an increased ratio of positive staining for CD31. In conclusion, these findings indicate that ANXA1 enhances the in vivo and in vitro vascularization of DPSCs, and the activation of p-p38 may play a pivotal role in mediating the differentiation process.</p>\",\"PeriodicalId\":21962,\"journal\":{\"name\":\"Stem Cells International\",\"volume\":\"2024 \",\"pages\":\"7045341\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7045341\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/7045341","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
ANXA1 Enhances the Proangiogenic Potential of Human Dental Pulp Stem Cells.
Dental trauma is highly prevalent in children and adolescents, alongside tooth decay. This condition mainly induces pulp contamination, pulp necrosis, and tooth avulsion in the clinical context. The disturbance to root growth is prone to occur in immature permanent teeth. However, conventional endodontic treatment may not achieve favorable outcomes in these cases, necessitating conducting relevant exploration. Therefore, this study was performed to examine the impact of Annexin A1 (ANXA1) on the vascular repair of dental pulp using human dental pulp stem cells (DPSCs). Specifically, RNA sequencing (RNA-Seq) and functional clustering analyses were employed to identify key genes involved in pulp regeneration. ANXA1 was detected in DPSCs and may correlate with pulp restoration. However, it remains undefined about the potential of ANXA1 to promote the angiogenetic differentiation of DPSCs. The results of this study revealed that the addition of ANXA1 significantly enhanced the secretion of vascular endothelial growth factor-A (VEGF-A) in DPSCs. Moreover, the incubation of DPSCs with ANXA1 resulted in a higher expression level of endothelial markers and promoted vessel formation through the upregulation of the phosphorylated p38 (p-p38) pathway. The in vivo results corroborated that the ANXA1 group exhibited more blood vessels and an increased ratio of positive staining for CD31. In conclusion, these findings indicate that ANXA1 enhances the in vivo and in vitro vascularization of DPSCs, and the activation of p-p38 may play a pivotal role in mediating the differentiation process.
期刊介绍:
Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials.
Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.