{"title":"福莫西汀通过靶向 NADPH 氧化酶 4 在活化的肝星状细胞中诱导铁变态反应以减轻肝纤维化","authors":"Ming-Xuan Liu, Ying-Ying Gu, Wen-Yuan Nie, Xiao-Ming Zhu, Meng-Jing Qi, Rui-Min Zhao, Wei-Zhong Zhu, Xiao-Ling Zhang","doi":"10.1002/ptr.8338","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a newly discovered type of cell death that exerts a crucial role in hepatic fibrosis. Formononetin (FMN), a natural isoflavone compound mainly isolated from Spatholobus suberectus Dunn, shows multiple biological activities, including antioxidant, anti-inflammatory, and hepatoprotection. This research aims to explore the regulatory mechanism of FMN in liver fibrosis and the relationship between NADPH oxidase 4 (NOX4) and ferroptosis. The effects of FMN on HSC ferroptosis were evaluated in rat model of CCl<sub>4</sub>-induced hepatic fibrosis. In vitro, N-acetyl-L-cysteine (NAC) and deferoxamine (DFO) were used to block ferroptosis and then explored the anti-fibrotic effect of FMN. The target protein of FMN was identified by bio-orthogonal click chemistry reaction as well as drug affinity responsive target stability (DARTS), cellular thermal shift (CETSA), surface plasmon resonance (SPR) assays, and isothermal titration calorimetry (ITC) analysis. Here, we found that FMN exerted anti-fibrotic effects via inducing ferroptosis in activated HSCs. NAC and DFO prevented FMN-induced ferroptotic cell death and collagen reduction. Furthermore, FMN bound directly to NOX4 through possible active amino acid residues sites, and increased NOX4-based NADPH oxidase activity to enhance levels of NADP<sup>+</sup>/NADPH, thus promoting ferroptosis of activated HSCs and relieving liver fibrosis. These results demonstrate that the direct target and mechanism by which FMN improves liver fibrosis, suggesting that FMN may be a natural candidate for further development of liver fibrosis therapy.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formononetin Induces Ferroptosis in Activated Hepatic Stellate Cells to Attenuate Liver Fibrosis by Targeting NADPH Oxidase 4.\",\"authors\":\"Ming-Xuan Liu, Ying-Ying Gu, Wen-Yuan Nie, Xiao-Ming Zhu, Meng-Jing Qi, Rui-Min Zhao, Wei-Zhong Zhu, Xiao-Ling Zhang\",\"doi\":\"10.1002/ptr.8338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is a newly discovered type of cell death that exerts a crucial role in hepatic fibrosis. Formononetin (FMN), a natural isoflavone compound mainly isolated from Spatholobus suberectus Dunn, shows multiple biological activities, including antioxidant, anti-inflammatory, and hepatoprotection. This research aims to explore the regulatory mechanism of FMN in liver fibrosis and the relationship between NADPH oxidase 4 (NOX4) and ferroptosis. The effects of FMN on HSC ferroptosis were evaluated in rat model of CCl<sub>4</sub>-induced hepatic fibrosis. In vitro, N-acetyl-L-cysteine (NAC) and deferoxamine (DFO) were used to block ferroptosis and then explored the anti-fibrotic effect of FMN. The target protein of FMN was identified by bio-orthogonal click chemistry reaction as well as drug affinity responsive target stability (DARTS), cellular thermal shift (CETSA), surface plasmon resonance (SPR) assays, and isothermal titration calorimetry (ITC) analysis. Here, we found that FMN exerted anti-fibrotic effects via inducing ferroptosis in activated HSCs. NAC and DFO prevented FMN-induced ferroptotic cell death and collagen reduction. Furthermore, FMN bound directly to NOX4 through possible active amino acid residues sites, and increased NOX4-based NADPH oxidase activity to enhance levels of NADP<sup>+</sup>/NADPH, thus promoting ferroptosis of activated HSCs and relieving liver fibrosis. These results demonstrate that the direct target and mechanism by which FMN improves liver fibrosis, suggesting that FMN may be a natural candidate for further development of liver fibrosis therapy.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8338\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8338","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Formononetin Induces Ferroptosis in Activated Hepatic Stellate Cells to Attenuate Liver Fibrosis by Targeting NADPH Oxidase 4.
Ferroptosis is a newly discovered type of cell death that exerts a crucial role in hepatic fibrosis. Formononetin (FMN), a natural isoflavone compound mainly isolated from Spatholobus suberectus Dunn, shows multiple biological activities, including antioxidant, anti-inflammatory, and hepatoprotection. This research aims to explore the regulatory mechanism of FMN in liver fibrosis and the relationship between NADPH oxidase 4 (NOX4) and ferroptosis. The effects of FMN on HSC ferroptosis were evaluated in rat model of CCl4-induced hepatic fibrosis. In vitro, N-acetyl-L-cysteine (NAC) and deferoxamine (DFO) were used to block ferroptosis and then explored the anti-fibrotic effect of FMN. The target protein of FMN was identified by bio-orthogonal click chemistry reaction as well as drug affinity responsive target stability (DARTS), cellular thermal shift (CETSA), surface plasmon resonance (SPR) assays, and isothermal titration calorimetry (ITC) analysis. Here, we found that FMN exerted anti-fibrotic effects via inducing ferroptosis in activated HSCs. NAC and DFO prevented FMN-induced ferroptotic cell death and collagen reduction. Furthermore, FMN bound directly to NOX4 through possible active amino acid residues sites, and increased NOX4-based NADPH oxidase activity to enhance levels of NADP+/NADPH, thus promoting ferroptosis of activated HSCs and relieving liver fibrosis. These results demonstrate that the direct target and mechanism by which FMN improves liver fibrosis, suggesting that FMN may be a natural candidate for further development of liver fibrosis therapy.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.