George S Liu, Sharad Parulekar, Melissa C Lee, Trishia El Chemaly, Mohamed Diop, Roy Park, Nikolas H Blevins
{"title":"人工智能跟踪乳突切除术视频中的耳科器械。","authors":"George S Liu, Sharad Parulekar, Melissa C Lee, Trishia El Chemaly, Mohamed Diop, Roy Park, Nikolas H Blevins","doi":"10.1097/MAO.0000000000004330","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Develop an artificial intelligence (AI) model to track otologic instruments in mastoidectomy videos.</p><p><strong>Study design: </strong>Retrospective case series.</p><p><strong>Setting: </strong>Tertiary care center.</p><p><strong>Subjects: </strong>Six otolaryngology residents (PGY 3-5) and one senior neurotology attending.</p><p><strong>Interventions: </strong>Thirteen 30-minute videos of cadaveric mastoidectomies were recorded by residents. The suction irrigator and drill were semi-manually annotated. Videos were split into training (N = 8), validation (N = 3), and test (N = 2) sets. YOLOv8, a state-of-the-art AI computer vision model, was adapted to track the instruments.</p><p><strong>Main outcome measures: </strong>Precision, recall, and mean average precision using an intersection over union cutoff of 50% (mAP50). Drill speed in two prospectively collected live mastoidectomy videos by a resident and attending surgeon.</p><p><strong>Results: </strong>The model achieved excellent performance for tracking the drill (precision 0.93, recall 0.89, and mAP50 0.93) and low performance for the suction irrigator (precision 0.67, recall 0.61, and mAP50 0.62) in test videos. Prediction speed was fast (~100 milliseconds per image). Predictions on prospective videos revealed higher mean drill speed (8.6 ± 5.7 versus 7.6 ± 7.4 mm/s, respectively; mean ± SD; p < 0.01) and duration of high drill speed (>15 mm/s; p < 0.05) in attending than resident surgery.</p><p><strong>Conclusions: </strong>An AI model can track the drill in mastoidectomy videos with high accuracy and near-real-time processing speed. Automated tracking opens the door to analyzing objective metrics of surgical skill without the need for manual annotation and will provide valuable data for future navigation and augmented reality surgical environments.</p>","PeriodicalId":19732,"journal":{"name":"Otology & Neurotology","volume":" ","pages":"1192-1197"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Tracking of Otologic Instruments in Mastoidectomy Videos.\",\"authors\":\"George S Liu, Sharad Parulekar, Melissa C Lee, Trishia El Chemaly, Mohamed Diop, Roy Park, Nikolas H Blevins\",\"doi\":\"10.1097/MAO.0000000000004330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Develop an artificial intelligence (AI) model to track otologic instruments in mastoidectomy videos.</p><p><strong>Study design: </strong>Retrospective case series.</p><p><strong>Setting: </strong>Tertiary care center.</p><p><strong>Subjects: </strong>Six otolaryngology residents (PGY 3-5) and one senior neurotology attending.</p><p><strong>Interventions: </strong>Thirteen 30-minute videos of cadaveric mastoidectomies were recorded by residents. The suction irrigator and drill were semi-manually annotated. Videos were split into training (N = 8), validation (N = 3), and test (N = 2) sets. YOLOv8, a state-of-the-art AI computer vision model, was adapted to track the instruments.</p><p><strong>Main outcome measures: </strong>Precision, recall, and mean average precision using an intersection over union cutoff of 50% (mAP50). Drill speed in two prospectively collected live mastoidectomy videos by a resident and attending surgeon.</p><p><strong>Results: </strong>The model achieved excellent performance for tracking the drill (precision 0.93, recall 0.89, and mAP50 0.93) and low performance for the suction irrigator (precision 0.67, recall 0.61, and mAP50 0.62) in test videos. Prediction speed was fast (~100 milliseconds per image). Predictions on prospective videos revealed higher mean drill speed (8.6 ± 5.7 versus 7.6 ± 7.4 mm/s, respectively; mean ± SD; p < 0.01) and duration of high drill speed (>15 mm/s; p < 0.05) in attending than resident surgery.</p><p><strong>Conclusions: </strong>An AI model can track the drill in mastoidectomy videos with high accuracy and near-real-time processing speed. Automated tracking opens the door to analyzing objective metrics of surgical skill without the need for manual annotation and will provide valuable data for future navigation and augmented reality surgical environments.</p>\",\"PeriodicalId\":19732,\"journal\":{\"name\":\"Otology & Neurotology\",\"volume\":\" \",\"pages\":\"1192-1197\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Otology & Neurotology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MAO.0000000000004330\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Otology & Neurotology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MAO.0000000000004330","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Artificial Intelligence Tracking of Otologic Instruments in Mastoidectomy Videos.
Objective: Develop an artificial intelligence (AI) model to track otologic instruments in mastoidectomy videos.
Study design: Retrospective case series.
Setting: Tertiary care center.
Subjects: Six otolaryngology residents (PGY 3-5) and one senior neurotology attending.
Interventions: Thirteen 30-minute videos of cadaveric mastoidectomies were recorded by residents. The suction irrigator and drill were semi-manually annotated. Videos were split into training (N = 8), validation (N = 3), and test (N = 2) sets. YOLOv8, a state-of-the-art AI computer vision model, was adapted to track the instruments.
Main outcome measures: Precision, recall, and mean average precision using an intersection over union cutoff of 50% (mAP50). Drill speed in two prospectively collected live mastoidectomy videos by a resident and attending surgeon.
Results: The model achieved excellent performance for tracking the drill (precision 0.93, recall 0.89, and mAP50 0.93) and low performance for the suction irrigator (precision 0.67, recall 0.61, and mAP50 0.62) in test videos. Prediction speed was fast (~100 milliseconds per image). Predictions on prospective videos revealed higher mean drill speed (8.6 ± 5.7 versus 7.6 ± 7.4 mm/s, respectively; mean ± SD; p < 0.01) and duration of high drill speed (>15 mm/s; p < 0.05) in attending than resident surgery.
Conclusions: An AI model can track the drill in mastoidectomy videos with high accuracy and near-real-time processing speed. Automated tracking opens the door to analyzing objective metrics of surgical skill without the need for manual annotation and will provide valuable data for future navigation and augmented reality surgical environments.
期刊介绍:
Otology & Neurotology publishes original articles relating to both clinical and basic science aspects of otology, neurotology, and cranial base surgery. As the foremost journal in its field, it has become the favored place for publishing the best of new science relating to the human ear and its diseases. The broadly international character of its contributing authors, editorial board, and readership provides the Journal its decidedly global perspective.