Jingting Dong, Shaosan Kang, Fenghong Cao, Xi Chen, Xiaofei Wang, Lei Wang, Qing Wang, Yupu Zhai
{"title":"TMCO1 和 CALR 在前列腺癌病理特征中的关系及其对前列腺癌细胞转移的影响。","authors":"Jingting Dong, Shaosan Kang, Fenghong Cao, Xi Chen, Xiaofei Wang, Lei Wang, Qing Wang, Yupu Zhai","doi":"10.1515/biol-2022-0972","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium homeostasis is correlated closely with the occurrence and development of various cancers. The role of calcium homeostasis in prostate cancer has remained unclear. The present study aimed to investigate the relationship between transmembrane and crimp-crimp domain 1 (TMCO1) and calreticulin (CALR) in the pathological characteristics of prostate cancer and the mechanism of action on prostate cancer metastasis. Effects of CALR recombinant protein and TMCO1 knockdown on prostate cancer cells were investigated using following methods: cell cloning, Transwell, wound scratch assay, JC-1 assay, Fluo-4 Assay, endoplasmic reticulum (ER) fluorescent probe, mitochondrial fluorescence probe, Western blot and Immunofluorescence. TMCO1 and CALR are overexpressed in prostate cancer and knockdown of TMCO1 significantly inhibited the invasion, migration and cell proliferation. Furthermore, knocking down TMCO1 modulated the intensity of ER probes and mitochondrial fluorescence probes, and affected the levels of intracellular calcium ion and mitochondrial membrane potential. In addition, CALR recombinant protein upregulated the expression of epithelial-mesenchymal transition marker, Vimentin, Conversely, knockout of TMCO1 significantly reduced the expression of CALR and Vimentin. Knockout of TMCO1 can reverse the effect of CALR recombinant protein, elucidating the pivotal roles of TMCO1 and CALR in the regulation of prostate cancer metastasis through modulation of calcium homeostasis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524394/pdf/","citationCount":"0","resultStr":"{\"title\":\"The relationship between TMCO1 and CALR in the pathological characteristics of prostate cancer and its effect on the metastasis of prostate cancer cells.\",\"authors\":\"Jingting Dong, Shaosan Kang, Fenghong Cao, Xi Chen, Xiaofei Wang, Lei Wang, Qing Wang, Yupu Zhai\",\"doi\":\"10.1515/biol-2022-0972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calcium homeostasis is correlated closely with the occurrence and development of various cancers. The role of calcium homeostasis in prostate cancer has remained unclear. The present study aimed to investigate the relationship between transmembrane and crimp-crimp domain 1 (TMCO1) and calreticulin (CALR) in the pathological characteristics of prostate cancer and the mechanism of action on prostate cancer metastasis. Effects of CALR recombinant protein and TMCO1 knockdown on prostate cancer cells were investigated using following methods: cell cloning, Transwell, wound scratch assay, JC-1 assay, Fluo-4 Assay, endoplasmic reticulum (ER) fluorescent probe, mitochondrial fluorescence probe, Western blot and Immunofluorescence. TMCO1 and CALR are overexpressed in prostate cancer and knockdown of TMCO1 significantly inhibited the invasion, migration and cell proliferation. Furthermore, knocking down TMCO1 modulated the intensity of ER probes and mitochondrial fluorescence probes, and affected the levels of intracellular calcium ion and mitochondrial membrane potential. In addition, CALR recombinant protein upregulated the expression of epithelial-mesenchymal transition marker, Vimentin, Conversely, knockout of TMCO1 significantly reduced the expression of CALR and Vimentin. Knockout of TMCO1 can reverse the effect of CALR recombinant protein, elucidating the pivotal roles of TMCO1 and CALR in the regulation of prostate cancer metastasis through modulation of calcium homeostasis.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/biol-2022-0972\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-0972","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
钙平衡与各种癌症的发生和发展密切相关。钙稳态在前列腺癌中的作用尚不清楚。本研究旨在探讨跨膜和卷曲-卷曲结构域1(TMCO1)与钙调蛋白(CALR)在前列腺癌病理特征中的关系以及对前列腺癌转移的作用机制。研究人员采用细胞克隆、Transwell、伤口划痕试验、JC-1试验、Fluo-4试验、内质网(ER)荧光探针、线粒体荧光探针、Western印迹和免疫荧光等方法研究了CALR重组蛋白和TMCO1基因敲除对前列腺癌细胞的影响。TMCO1和CALR在前列腺癌中过表达,敲除TMCO1可显著抑制细胞的侵袭、迁移和增殖。此外,敲除 TMCO1 可调节 ER 探针和线粒体荧光探针的强度,并影响细胞内钙离子和线粒体膜电位的水平。此外,CALR重组蛋白能上调上皮-间质转化标志物Vimentin的表达,相反,敲除TMCO1能显著降低CALR和Vimentin的表达。敲除TMCO1可以逆转CALR重组蛋白的作用,从而阐明了TMCO1和CALR通过调节钙稳态在调控前列腺癌转移中的关键作用。
The relationship between TMCO1 and CALR in the pathological characteristics of prostate cancer and its effect on the metastasis of prostate cancer cells.
Calcium homeostasis is correlated closely with the occurrence and development of various cancers. The role of calcium homeostasis in prostate cancer has remained unclear. The present study aimed to investigate the relationship between transmembrane and crimp-crimp domain 1 (TMCO1) and calreticulin (CALR) in the pathological characteristics of prostate cancer and the mechanism of action on prostate cancer metastasis. Effects of CALR recombinant protein and TMCO1 knockdown on prostate cancer cells were investigated using following methods: cell cloning, Transwell, wound scratch assay, JC-1 assay, Fluo-4 Assay, endoplasmic reticulum (ER) fluorescent probe, mitochondrial fluorescence probe, Western blot and Immunofluorescence. TMCO1 and CALR are overexpressed in prostate cancer and knockdown of TMCO1 significantly inhibited the invasion, migration and cell proliferation. Furthermore, knocking down TMCO1 modulated the intensity of ER probes and mitochondrial fluorescence probes, and affected the levels of intracellular calcium ion and mitochondrial membrane potential. In addition, CALR recombinant protein upregulated the expression of epithelial-mesenchymal transition marker, Vimentin, Conversely, knockout of TMCO1 significantly reduced the expression of CALR and Vimentin. Knockout of TMCO1 can reverse the effect of CALR recombinant protein, elucidating the pivotal roles of TMCO1 and CALR in the regulation of prostate cancer metastasis through modulation of calcium homeostasis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.