Fábio Carlos da Silva Filho, Vanessa Stefani, Eduardo Soares Calixto
{"title":"植物特征和季节性决定了蜘蛛物种间的共存和生态位隔离模式。","authors":"Fábio Carlos da Silva Filho, Vanessa Stefani, Eduardo Soares Calixto","doi":"10.1007/s00442-024-05625-9","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the mechanisms that enable species coexistence is a central question in ecology, as it helps to comprehend species diversity. One of the most common stabilizing mechanisms of coexistence is niche segregation, which can prevent the competitive exclusion of the fittest competitor. Niche segregation can manifest itself at various temporal and spatial scales, allowing provide essential insights into understanding the stabilizing mechanisms facilitating the coexistence of species. We assessed coexistence patterns among flower-dwelling spiders in two ways, in the first set of analyses, we investigated the factors influencing the quantity of spider individuals and species. The second approach we investigate the spatio-temporal segregation between species, effectively examining the coexistence patterns. We observed that the presence of inflorescences per plant, the number of flowers per inflorescence, and the presence of EFNs play a significant role in increasing spider abundance and richness. We find only a marginal seasonal effect, suggesting that spiders have constant access to resources throughout the year. Our niche overlap analysis demonstrated synchrony in the spatial occupation of niches by different spider species. The coexistence patterns appeared to be unaffected by the number of inflorescences. The greater number of inflorescences will enable a greater availability of niches, and consequently more abundance and richness of species of spiders the plant can sustain. Our results suggest that, to mitigate the adverse consequences of competitive interactions, spiders tend to adopt spatial partitioning as a strategy to facilitate the coexistence of spiders living in reproductive structures on plants in the Brazilian savanna.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":" ","pages":"265-274"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant traits and seasonality shape coexistence and niche segregation patterns among spider species.\",\"authors\":\"Fábio Carlos da Silva Filho, Vanessa Stefani, Eduardo Soares Calixto\",\"doi\":\"10.1007/s00442-024-05625-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the mechanisms that enable species coexistence is a central question in ecology, as it helps to comprehend species diversity. One of the most common stabilizing mechanisms of coexistence is niche segregation, which can prevent the competitive exclusion of the fittest competitor. Niche segregation can manifest itself at various temporal and spatial scales, allowing provide essential insights into understanding the stabilizing mechanisms facilitating the coexistence of species. We assessed coexistence patterns among flower-dwelling spiders in two ways, in the first set of analyses, we investigated the factors influencing the quantity of spider individuals and species. The second approach we investigate the spatio-temporal segregation between species, effectively examining the coexistence patterns. We observed that the presence of inflorescences per plant, the number of flowers per inflorescence, and the presence of EFNs play a significant role in increasing spider abundance and richness. We find only a marginal seasonal effect, suggesting that spiders have constant access to resources throughout the year. Our niche overlap analysis demonstrated synchrony in the spatial occupation of niches by different spider species. The coexistence patterns appeared to be unaffected by the number of inflorescences. The greater number of inflorescences will enable a greater availability of niches, and consequently more abundance and richness of species of spiders the plant can sustain. Our results suggest that, to mitigate the adverse consequences of competitive interactions, spiders tend to adopt spatial partitioning as a strategy to facilitate the coexistence of spiders living in reproductive structures on plants in the Brazilian savanna.</p>\",\"PeriodicalId\":19473,\"journal\":{\"name\":\"Oecologia\",\"volume\":\" \",\"pages\":\"265-274\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oecologia\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00442-024-05625-9\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05625-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Plant traits and seasonality shape coexistence and niche segregation patterns among spider species.
Understanding the mechanisms that enable species coexistence is a central question in ecology, as it helps to comprehend species diversity. One of the most common stabilizing mechanisms of coexistence is niche segregation, which can prevent the competitive exclusion of the fittest competitor. Niche segregation can manifest itself at various temporal and spatial scales, allowing provide essential insights into understanding the stabilizing mechanisms facilitating the coexistence of species. We assessed coexistence patterns among flower-dwelling spiders in two ways, in the first set of analyses, we investigated the factors influencing the quantity of spider individuals and species. The second approach we investigate the spatio-temporal segregation between species, effectively examining the coexistence patterns. We observed that the presence of inflorescences per plant, the number of flowers per inflorescence, and the presence of EFNs play a significant role in increasing spider abundance and richness. We find only a marginal seasonal effect, suggesting that spiders have constant access to resources throughout the year. Our niche overlap analysis demonstrated synchrony in the spatial occupation of niches by different spider species. The coexistence patterns appeared to be unaffected by the number of inflorescences. The greater number of inflorescences will enable a greater availability of niches, and consequently more abundance and richness of species of spiders the plant can sustain. Our results suggest that, to mitigate the adverse consequences of competitive interactions, spiders tend to adopt spatial partitioning as a strategy to facilitate the coexistence of spiders living in reproductive structures on plants in the Brazilian savanna.
期刊介绍:
Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas:
Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology,
Behavioral ecology and Physiological Ecology.
In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.