环境的复杂性会调节信息处理和决策系统之间的平衡。

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Ugurcan Mugan, Samantha L Hoffman, A David Redish
{"title":"环境的复杂性会调节信息处理和决策系统之间的平衡。","authors":"Ugurcan Mugan, Samantha L Hoffman, A David Redish","doi":"10.1016/j.neuron.2024.10.004","DOIUrl":null,"url":null,"abstract":"<p><p>Behavior in naturalistic scenarios occurs in diverse environments. Adaptive strategies rely on multiple neural circuits and competing decision systems. However, past studies of rodent decision making have largely measured behavior in simple environments. To fill this gap, we recorded neural ensembles from hippocampus (HC), dorsolateral striatum (DLS), and dorsomedial prefrontal cortex (dmPFC) while rats foraged for food under changing rules in environments with varying topological complexity. Environmental complexity increased behavioral variability, lengthened HC nonlocal sequences, and modulated action caching. We found contrasting representations between DLS and HC, supporting a competition between decision systems. dmPFC activity was indicative of setting this balance, in particular predicting the extent of HC non-local coding. Inactivating mPFC impaired short-term behavioral adaptation and produced long-term deficits in balancing decision systems. Our findings reveal the dynamic nature of decision-making systems and how environmental complexity modulates their engagement with implications for behavior in naturalistic environments.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental complexity modulates information processing and the balance between decision-making systems.\",\"authors\":\"Ugurcan Mugan, Samantha L Hoffman, A David Redish\",\"doi\":\"10.1016/j.neuron.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Behavior in naturalistic scenarios occurs in diverse environments. Adaptive strategies rely on multiple neural circuits and competing decision systems. However, past studies of rodent decision making have largely measured behavior in simple environments. To fill this gap, we recorded neural ensembles from hippocampus (HC), dorsolateral striatum (DLS), and dorsomedial prefrontal cortex (dmPFC) while rats foraged for food under changing rules in environments with varying topological complexity. Environmental complexity increased behavioral variability, lengthened HC nonlocal sequences, and modulated action caching. We found contrasting representations between DLS and HC, supporting a competition between decision systems. dmPFC activity was indicative of setting this balance, in particular predicting the extent of HC non-local coding. Inactivating mPFC impaired short-term behavioral adaptation and produced long-term deficits in balancing decision systems. Our findings reveal the dynamic nature of decision-making systems and how environmental complexity modulates their engagement with implications for behavior in naturalistic environments.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2024.10.004\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.10.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

自然场景中的行为发生在不同的环境中。适应策略依赖于多个神经回路和相互竞争的决策系统。然而,过去对啮齿动物决策制定的研究大多是在简单环境中测量行为。为了填补这一空白,我们记录了海马(HC)、背外侧纹状体(DLS)和背内侧前额叶皮层(dmPFC)的神经集合,当时大鼠正在拓扑复杂程度不同的环境中根据不断变化的规则觅食。环境的复杂性增加了行为的可变性,延长了HC非局部序列,并调节了动作缓存。我们发现 DLS 和 HC 之间的表征形成了鲜明对比,这支持了决策系统之间的竞争。dmPFC 的活动表明了这种平衡的设定,尤其是预测 HC 非本地编码的程度。使 mPFC 失活会损害短期行为适应,并产生平衡决策系统的长期缺陷。我们的研究结果揭示了决策系统的动态性质,以及环境复杂性如何调节决策系统的参与,并对自然环境中的行为产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental complexity modulates information processing and the balance between decision-making systems.

Behavior in naturalistic scenarios occurs in diverse environments. Adaptive strategies rely on multiple neural circuits and competing decision systems. However, past studies of rodent decision making have largely measured behavior in simple environments. To fill this gap, we recorded neural ensembles from hippocampus (HC), dorsolateral striatum (DLS), and dorsomedial prefrontal cortex (dmPFC) while rats foraged for food under changing rules in environments with varying topological complexity. Environmental complexity increased behavioral variability, lengthened HC nonlocal sequences, and modulated action caching. We found contrasting representations between DLS and HC, supporting a competition between decision systems. dmPFC activity was indicative of setting this balance, in particular predicting the extent of HC non-local coding. Inactivating mPFC impaired short-term behavioral adaptation and produced long-term deficits in balancing decision systems. Our findings reveal the dynamic nature of decision-making systems and how environmental complexity modulates their engagement with implications for behavior in naturalistic environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信