土荆皮提取物对头颈癌细胞的抗氧化、细胞毒性、抗迁移和促凋亡作用

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sibel Özdaş, İpek Canatar, Talih Özdaş, Sezen Yilmaz Sarialtin, Aslı Can Ağca, Murat Koç
{"title":"土荆皮提取物对头颈癌细胞的抗氧化、细胞毒性、抗迁移和促凋亡作用","authors":"Sibel Özdaş, İpek Canatar, Talih Özdaş, Sezen Yilmaz Sarialtin, Aslı Can Ağca, Murat Koç","doi":"10.1007/s11033-024-09994-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Investigation of various plant extracts using in-vitro/in-vivo assays has emerged as a promising avenue for identifying potential pharmacophores that can be developed into therapeutic drugs. This study aims to assess the bioactive compounds and antioxidant capacity of the Bolanthus turcicus (B. turcicus) and to investigate the effects on head and neck cancer (HNC) cell lines.</p><p><strong>Methods: </strong>Methanol (MeOH), ethyl acetate (EA) and aqueous (Aq) extracts were prepared from B. turcicus, and the amount of total phenolic content (TPC) and total flavonoid content (TFC) in the extracts were analyzed by the Folin-Ciocalteu and Aluminum chloride method, respectively. In addition, the total antioxidant capacity and iron reducing potential of B. turcicus extracts were determined by the Phosphomolybdenum and Ferric ion reducing antioxidant power (FRAP) method. The effect of B. turcicus on HEp-2, SCC-90, SCC-9, FaDu HNC cell viability, motility, and cell-nuclear morphology was evaluated by MTT, scratch-wound healing assay, and Pllalloidin-DAPI staining, respectively. The effect of B. turcicus on the expression of CASP-3, BAX, and BCL-2 genes at the mRNA, protein, and intracellular level was evaluated by quantitative PCR (qPCR), western blot, and immunofluorescence staining. Moreover, Annexin V-FITC/PI, was used in flow cytometry to investigate the effect of B. turcicus on apoptosis.</p><p><strong>Results: </strong>The MeOH extract exhibited the highest phenolic content, flavonoid content and antioxidant activity (p < 0.05 for all). HNC cells treated with extracts indicated delayed wound healing and decreased motility (p < 0.05 for all). Analysis of annexin V-PI staining indicated that the B. turcicus extracts induced apoptosis but not viability and necrosis in the HNC cell (p < 0.05 for all). Moreover, qPCR data regarding the apoptotic mechanism showed that the extracts could induce apoptosis by upregulation of pro-apoptotic CASP-3 and BAX genes and downregulation of anti-apoptotic BCL-2 gene (p < 0.05 for all). The expression of protein and intracellular levels of CASP-3 and BAX were increased, while the BCL-2 was decreased in cells treated with the extracts (p < 0.05 for all). In addition, diffuse pycnosis and DNA condensation in HNC cell nuclei, confirming apoptotic cell death (p < 0.05 for all).</p><p><strong>Conclusion: </strong>This study data indicated that B. turcicus extracts have antioxidant, cytotoxic, anti-migratory and pro-apoptotic activity. In conclusion, it has been shown that B. turcicus can be used as a potential therapeutic agent against HNC.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1104"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant, cytotoxic, anti-migratory, and pro-apoptotic effects of Bolanthus turcicus extracts on head and neck cancer cells.\",\"authors\":\"Sibel Özdaş, İpek Canatar, Talih Özdaş, Sezen Yilmaz Sarialtin, Aslı Can Ağca, Murat Koç\",\"doi\":\"10.1007/s11033-024-09994-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Investigation of various plant extracts using in-vitro/in-vivo assays has emerged as a promising avenue for identifying potential pharmacophores that can be developed into therapeutic drugs. This study aims to assess the bioactive compounds and antioxidant capacity of the Bolanthus turcicus (B. turcicus) and to investigate the effects on head and neck cancer (HNC) cell lines.</p><p><strong>Methods: </strong>Methanol (MeOH), ethyl acetate (EA) and aqueous (Aq) extracts were prepared from B. turcicus, and the amount of total phenolic content (TPC) and total flavonoid content (TFC) in the extracts were analyzed by the Folin-Ciocalteu and Aluminum chloride method, respectively. In addition, the total antioxidant capacity and iron reducing potential of B. turcicus extracts were determined by the Phosphomolybdenum and Ferric ion reducing antioxidant power (FRAP) method. The effect of B. turcicus on HEp-2, SCC-90, SCC-9, FaDu HNC cell viability, motility, and cell-nuclear morphology was evaluated by MTT, scratch-wound healing assay, and Pllalloidin-DAPI staining, respectively. The effect of B. turcicus on the expression of CASP-3, BAX, and BCL-2 genes at the mRNA, protein, and intracellular level was evaluated by quantitative PCR (qPCR), western blot, and immunofluorescence staining. Moreover, Annexin V-FITC/PI, was used in flow cytometry to investigate the effect of B. turcicus on apoptosis.</p><p><strong>Results: </strong>The MeOH extract exhibited the highest phenolic content, flavonoid content and antioxidant activity (p < 0.05 for all). HNC cells treated with extracts indicated delayed wound healing and decreased motility (p < 0.05 for all). Analysis of annexin V-PI staining indicated that the B. turcicus extracts induced apoptosis but not viability and necrosis in the HNC cell (p < 0.05 for all). Moreover, qPCR data regarding the apoptotic mechanism showed that the extracts could induce apoptosis by upregulation of pro-apoptotic CASP-3 and BAX genes and downregulation of anti-apoptotic BCL-2 gene (p < 0.05 for all). The expression of protein and intracellular levels of CASP-3 and BAX were increased, while the BCL-2 was decreased in cells treated with the extracts (p < 0.05 for all). In addition, diffuse pycnosis and DNA condensation in HNC cell nuclei, confirming apoptotic cell death (p < 0.05 for all).</p><p><strong>Conclusion: </strong>This study data indicated that B. turcicus extracts have antioxidant, cytotoxic, anti-migratory and pro-apoptotic activity. In conclusion, it has been shown that B. turcicus can be used as a potential therapeutic agent against HNC.</p>\",\"PeriodicalId\":18755,\"journal\":{\"name\":\"Molecular Biology Reports\",\"volume\":\"51 1\",\"pages\":\"1104\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11033-024-09994-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-024-09994-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用体外/体内试验对各种植物提取物进行研究,已成为确定可开发为治疗药物的潜在药理作用的一种有前途的途径。本研究旨在评估土鳖虫(Bolanthus turcicus)的生物活性化合物和抗氧化能力,并调查其对头颈癌(HNC)细胞系的影响:方法:用甲醇(MeOH)、乙酸乙酯(EA)和水(Aq)提取土荆芥,分别用Folin-Ciocalteu法和氯化铝法分析提取物中的总酚含量(TPC)和总黄酮含量(TFC)。此外,还采用磷钼法和铁离子还原抗氧化力(FRAP)法测定了土鳖虫提取物的总抗氧化能力和铁还原潜力。土鳖虫提取物对 HEp-2、SCC-90、SCC-9 和 FaDu HNC 细胞活力、运动性和细胞核形态的影响分别通过 MTT、划痕伤口愈合试验和 Pllalloidin-DAPI 染色法进行了评价。通过定量 PCR(qPCR)、Western 印迹和免疫荧光染色评估了土鳖虫对 CASP-3、BAX 和 BCL-2 基因在 mRNA、蛋白质和细胞内表达的影响。此外,在流式细胞术中使用 Annexin V-FITC/PI 来研究 B. turcicus 对细胞凋亡的影响:结果:MeOH 提取物的酚含量、类黄酮含量和抗氧化活性(p)最高:本研究数据表明,土鳖虫提取物具有抗氧化、细胞毒性、抗迁移和促凋亡活性。总之,研究结果表明 B. turcicus 可作为一种潜在的 HNC 治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antioxidant, cytotoxic, anti-migratory, and pro-apoptotic effects of Bolanthus turcicus extracts on head and neck cancer cells.

Purpose: Investigation of various plant extracts using in-vitro/in-vivo assays has emerged as a promising avenue for identifying potential pharmacophores that can be developed into therapeutic drugs. This study aims to assess the bioactive compounds and antioxidant capacity of the Bolanthus turcicus (B. turcicus) and to investigate the effects on head and neck cancer (HNC) cell lines.

Methods: Methanol (MeOH), ethyl acetate (EA) and aqueous (Aq) extracts were prepared from B. turcicus, and the amount of total phenolic content (TPC) and total flavonoid content (TFC) in the extracts were analyzed by the Folin-Ciocalteu and Aluminum chloride method, respectively. In addition, the total antioxidant capacity and iron reducing potential of B. turcicus extracts were determined by the Phosphomolybdenum and Ferric ion reducing antioxidant power (FRAP) method. The effect of B. turcicus on HEp-2, SCC-90, SCC-9, FaDu HNC cell viability, motility, and cell-nuclear morphology was evaluated by MTT, scratch-wound healing assay, and Pllalloidin-DAPI staining, respectively. The effect of B. turcicus on the expression of CASP-3, BAX, and BCL-2 genes at the mRNA, protein, and intracellular level was evaluated by quantitative PCR (qPCR), western blot, and immunofluorescence staining. Moreover, Annexin V-FITC/PI, was used in flow cytometry to investigate the effect of B. turcicus on apoptosis.

Results: The MeOH extract exhibited the highest phenolic content, flavonoid content and antioxidant activity (p < 0.05 for all). HNC cells treated with extracts indicated delayed wound healing and decreased motility (p < 0.05 for all). Analysis of annexin V-PI staining indicated that the B. turcicus extracts induced apoptosis but not viability and necrosis in the HNC cell (p < 0.05 for all). Moreover, qPCR data regarding the apoptotic mechanism showed that the extracts could induce apoptosis by upregulation of pro-apoptotic CASP-3 and BAX genes and downregulation of anti-apoptotic BCL-2 gene (p < 0.05 for all). The expression of protein and intracellular levels of CASP-3 and BAX were increased, while the BCL-2 was decreased in cells treated with the extracts (p < 0.05 for all). In addition, diffuse pycnosis and DNA condensation in HNC cell nuclei, confirming apoptotic cell death (p < 0.05 for all).

Conclusion: This study data indicated that B. turcicus extracts have antioxidant, cytotoxic, anti-migratory and pro-apoptotic activity. In conclusion, it has been shown that B. turcicus can be used as a potential therapeutic agent against HNC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信