{"title":"PATL2 和 WEE2 的新型剪接突变会导致卵母细胞退化和受精失败。","authors":"Zhenxing Liu, Lixia Zhu, Hui He, Meiqi Hou, Weimin Jia, Lei Jin, Qingsong Xi, Xianqin Zhang","doi":"10.1007/s10815-024-03260-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine the genetic cause of infertility in two unrelated families of female patients suffering from oocyte degeneration and fertilization failure.</p><p><strong>Methods: </strong>Whole exome sequencing and Sanger sequencing were performed to identify the disease-causing genes of infertility in two unrelated female patients. Minigene experiments were conducted to confirm the effect of splice site mutations on mRNA splicing.</p><p><strong>Results: </strong>In two unrelated female infertility patients, a novel compound heterozygous splicing mutation (c.516-1G > T and c.877-1G > A) in PATL2 gene and a novel homozygous splicing mutation (c.1222-1G > A) in WEE2 gene were identified. Minigene splicing assays revealed that the c.516-1G > T mutation in PATL2 resulted in a deletion of 8 bases in mRNA that causes a frameshift (c.516-523delTCCCCCAG, p.P173Q fs*13). The c.877-1G > A mutation led to the skipping of exons 10 and 11 and retention of introns 8-9 in PATL2 mRNA. The c.1222-1G > A mutation resulted in the deletion of exon 9 in WEE2 mRNA, leading to an in-frame deletion of 57 amino acids in the WEE2 protein (p.408-464del).</p><p><strong>Conclusion: </strong>Our study discovered novel splicing mutations in PATL2 and WEE2, further expanding the mutation spectrum of these two genes and providing guidance for genetic counseling and diagnosis of female infertility.</p>","PeriodicalId":15246,"journal":{"name":"Journal of Assisted Reproduction and Genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel splicing mutations in PATL2 and WEE2 cause oocyte degradation and fertilization failure.\",\"authors\":\"Zhenxing Liu, Lixia Zhu, Hui He, Meiqi Hou, Weimin Jia, Lei Jin, Qingsong Xi, Xianqin Zhang\",\"doi\":\"10.1007/s10815-024-03260-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To determine the genetic cause of infertility in two unrelated families of female patients suffering from oocyte degeneration and fertilization failure.</p><p><strong>Methods: </strong>Whole exome sequencing and Sanger sequencing were performed to identify the disease-causing genes of infertility in two unrelated female patients. Minigene experiments were conducted to confirm the effect of splice site mutations on mRNA splicing.</p><p><strong>Results: </strong>In two unrelated female infertility patients, a novel compound heterozygous splicing mutation (c.516-1G > T and c.877-1G > A) in PATL2 gene and a novel homozygous splicing mutation (c.1222-1G > A) in WEE2 gene were identified. Minigene splicing assays revealed that the c.516-1G > T mutation in PATL2 resulted in a deletion of 8 bases in mRNA that causes a frameshift (c.516-523delTCCCCCAG, p.P173Q fs*13). The c.877-1G > A mutation led to the skipping of exons 10 and 11 and retention of introns 8-9 in PATL2 mRNA. The c.1222-1G > A mutation resulted in the deletion of exon 9 in WEE2 mRNA, leading to an in-frame deletion of 57 amino acids in the WEE2 protein (p.408-464del).</p><p><strong>Conclusion: </strong>Our study discovered novel splicing mutations in PATL2 and WEE2, further expanding the mutation spectrum of these two genes and providing guidance for genetic counseling and diagnosis of female infertility.</p>\",\"PeriodicalId\":15246,\"journal\":{\"name\":\"Journal of Assisted Reproduction and Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Assisted Reproduction and Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10815-024-03260-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Assisted Reproduction and Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10815-024-03260-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Novel splicing mutations in PATL2 and WEE2 cause oocyte degradation and fertilization failure.
Purpose: To determine the genetic cause of infertility in two unrelated families of female patients suffering from oocyte degeneration and fertilization failure.
Methods: Whole exome sequencing and Sanger sequencing were performed to identify the disease-causing genes of infertility in two unrelated female patients. Minigene experiments were conducted to confirm the effect of splice site mutations on mRNA splicing.
Results: In two unrelated female infertility patients, a novel compound heterozygous splicing mutation (c.516-1G > T and c.877-1G > A) in PATL2 gene and a novel homozygous splicing mutation (c.1222-1G > A) in WEE2 gene were identified. Minigene splicing assays revealed that the c.516-1G > T mutation in PATL2 resulted in a deletion of 8 bases in mRNA that causes a frameshift (c.516-523delTCCCCCAG, p.P173Q fs*13). The c.877-1G > A mutation led to the skipping of exons 10 and 11 and retention of introns 8-9 in PATL2 mRNA. The c.1222-1G > A mutation resulted in the deletion of exon 9 in WEE2 mRNA, leading to an in-frame deletion of 57 amino acids in the WEE2 protein (p.408-464del).
Conclusion: Our study discovered novel splicing mutations in PATL2 and WEE2, further expanding the mutation spectrum of these two genes and providing guidance for genetic counseling and diagnosis of female infertility.
期刊介绍:
The Journal of Assisted Reproduction and Genetics publishes cellular, molecular, genetic, and epigenetic discoveries advancing our understanding of the biology and underlying mechanisms from gametogenesis to offspring health. Special emphasis is placed on the practice and evolution of assisted reproduction technologies (ARTs) with reference to the diagnosis and management of diseases affecting fertility. Our goal is to educate our readership in the translation of basic and clinical discoveries made from human or relevant animal models to the safe and efficacious practice of human ARTs. The scientific rigor and ethical standards embraced by the JARG editorial team ensures a broad international base of expertise guiding the marriage of contemporary clinical research paradigms with basic science discovery. JARG publishes original papers, minireviews, case reports, and opinion pieces often combined into special topic issues that will educate clinicians and scientists with interests in the mechanisms of human development that bear on the treatment of infertility and emerging innovations in human ARTs. The guiding principles of male and female reproductive health impacting pre- and post-conceptional viability and developmental potential are emphasized within the purview of human reproductive health in current and future generations of our species.
The journal is published in cooperation with the American Society for Reproductive Medicine, an organization of more than 8,000 physicians, researchers, nurses, technicians and other professionals dedicated to advancing knowledge and expertise in reproductive biology.