预测免疫检查点抑制剂疗法对肺癌患者的生存益处:利用真实世界数据的机器学习方法。

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Lingyun Pan, Li Mu, Haike Lei, Siwei Miao, Xiaogang Hu, Zongwei Tang, Wanyi Chen, Xiaoxiao Wang
{"title":"预测免疫检查点抑制剂疗法对肺癌患者的生存益处:利用真实世界数据的机器学习方法。","authors":"Lingyun Pan, Li Mu, Haike Lei, Siwei Miao, Xiaogang Hu, Zongwei Tang, Wanyi Chen, Xiaoxiao Wang","doi":"10.1007/s11096-024-01818-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to the heterogeneity in the effectiveness of immunotherapy for lung cancer, identifying predictors is crucial.</p><p><strong>Aim: </strong>This study aimed to develop a machine learning model to identify predictors of overall survival in lung cancer patients treated with immune checkpoint inhibitors (ICIs).</p><p><strong>Method: </strong>A retrospective analysis was performed on data from 1314 lung cancer patients at the Chongqing University Cancer Hospital from September 2018 to September 2022. We used the random survival forest (RSF) model to identify survival-influencing factors, using backward elimination for variable selection. A Cox proportional hazards (CPH) model was constructed using the most significant predictors. We assessed model performance and generalizability using time-dependent receiver operating characteristics (ROC) and predictive error curves.</p><p><strong>Results: </strong>The RSF model demonstrated better predictive accuracy than the CPH (IBS 0.17 vs. 0.17; C-index 0.91 vs. 0.68), with better discrimination and prediction performance. The influential variables identified included D-dimer, Karnofsky performance status, albumin, surgery, TNM stage, platelet count, and age. The RSF model, which incorporated these variables, achieved area under the curve (AUC) scores of 0.95, 0.94, and 0.98 for 1-, 3-, and 5-year survival predictions, respectively, in the training set. The validation set showed AUCs of 0.94, 0.90, and 0.95, respectively, exceeding the performance of the CPH model.</p><p><strong>Conclusion: </strong>The study successfully developed a machine learning model that accurately predicted the survival benefits of ICI therapy in lung cancer patients, supporting clinical decision-making in lung cancer treatment.</p>","PeriodicalId":13828,"journal":{"name":"International Journal of Clinical Pharmacy","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting survival benefits of immune checkpoint inhibitor therapy in lung cancer patients: a machine learning approach using real-world data.\",\"authors\":\"Lingyun Pan, Li Mu, Haike Lei, Siwei Miao, Xiaogang Hu, Zongwei Tang, Wanyi Chen, Xiaoxiao Wang\",\"doi\":\"10.1007/s11096-024-01818-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Due to the heterogeneity in the effectiveness of immunotherapy for lung cancer, identifying predictors is crucial.</p><p><strong>Aim: </strong>This study aimed to develop a machine learning model to identify predictors of overall survival in lung cancer patients treated with immune checkpoint inhibitors (ICIs).</p><p><strong>Method: </strong>A retrospective analysis was performed on data from 1314 lung cancer patients at the Chongqing University Cancer Hospital from September 2018 to September 2022. We used the random survival forest (RSF) model to identify survival-influencing factors, using backward elimination for variable selection. A Cox proportional hazards (CPH) model was constructed using the most significant predictors. We assessed model performance and generalizability using time-dependent receiver operating characteristics (ROC) and predictive error curves.</p><p><strong>Results: </strong>The RSF model demonstrated better predictive accuracy than the CPH (IBS 0.17 vs. 0.17; C-index 0.91 vs. 0.68), with better discrimination and prediction performance. The influential variables identified included D-dimer, Karnofsky performance status, albumin, surgery, TNM stage, platelet count, and age. The RSF model, which incorporated these variables, achieved area under the curve (AUC) scores of 0.95, 0.94, and 0.98 for 1-, 3-, and 5-year survival predictions, respectively, in the training set. The validation set showed AUCs of 0.94, 0.90, and 0.95, respectively, exceeding the performance of the CPH model.</p><p><strong>Conclusion: </strong>The study successfully developed a machine learning model that accurately predicted the survival benefits of ICI therapy in lung cancer patients, supporting clinical decision-making in lung cancer treatment.</p>\",\"PeriodicalId\":13828,\"journal\":{\"name\":\"International Journal of Clinical Pharmacy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Clinical Pharmacy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11096-024-01818-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clinical Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11096-024-01818-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:由于肺癌免疫疗法的疗效存在异质性,因此确定预测因素至关重要:目的:本研究旨在开发一种机器学习模型,以识别接受免疫检查点抑制剂(ICIs)治疗的肺癌患者总生存期的预测因素:对重庆大学附属肿瘤医院2018年9月至2022年9月1314名肺癌患者的数据进行了回顾性分析。我们使用随机生存森林(RSF)模型来识别生存影响因素,并使用反向排除法进行变量选择。利用最显著的预测因子构建了Cox比例危险(CPH)模型。我们使用与时间相关的接收者操作特征曲线(ROC)和预测误差曲线评估了模型的性能和可推广性:RSF模型的预测准确性优于CPH模型(IBS为0.17 vs. 0.17;C指数为0.91 vs. 0.68),具有更好的区分度和预测性能。已确定的影响变量包括 D-二聚体、卡诺夫斯基表现状态、白蛋白、手术、TNM 分期、血小板计数和年龄。包含这些变量的 RSF 模型在训练集中预测 1 年、3 年和 5 年生存率的曲线下面积(AUC)分别达到 0.95、0.94 和 0.98。验证集的 AUC 分别为 0.94、0.90 和 0.95,超过了 CPH 模型的性能:结论:该研究成功开发了一种机器学习模型,能准确预测肺癌患者接受 ICI 治疗后的生存获益,为肺癌治疗的临床决策提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting survival benefits of immune checkpoint inhibitor therapy in lung cancer patients: a machine learning approach using real-world data.

Background: Due to the heterogeneity in the effectiveness of immunotherapy for lung cancer, identifying predictors is crucial.

Aim: This study aimed to develop a machine learning model to identify predictors of overall survival in lung cancer patients treated with immune checkpoint inhibitors (ICIs).

Method: A retrospective analysis was performed on data from 1314 lung cancer patients at the Chongqing University Cancer Hospital from September 2018 to September 2022. We used the random survival forest (RSF) model to identify survival-influencing factors, using backward elimination for variable selection. A Cox proportional hazards (CPH) model was constructed using the most significant predictors. We assessed model performance and generalizability using time-dependent receiver operating characteristics (ROC) and predictive error curves.

Results: The RSF model demonstrated better predictive accuracy than the CPH (IBS 0.17 vs. 0.17; C-index 0.91 vs. 0.68), with better discrimination and prediction performance. The influential variables identified included D-dimer, Karnofsky performance status, albumin, surgery, TNM stage, platelet count, and age. The RSF model, which incorporated these variables, achieved area under the curve (AUC) scores of 0.95, 0.94, and 0.98 for 1-, 3-, and 5-year survival predictions, respectively, in the training set. The validation set showed AUCs of 0.94, 0.90, and 0.95, respectively, exceeding the performance of the CPH model.

Conclusion: The study successfully developed a machine learning model that accurately predicted the survival benefits of ICI therapy in lung cancer patients, supporting clinical decision-making in lung cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
8.30%
发文量
131
审稿时长
4-8 weeks
期刊介绍: The International Journal of Clinical Pharmacy (IJCP) offers a platform for articles on research in Clinical Pharmacy, Pharmaceutical Care and related practice-oriented subjects in the pharmaceutical sciences. IJCP is a bi-monthly, international, peer-reviewed journal that publishes original research data, new ideas and discussions on pharmacotherapy and outcome research, clinical pharmacy, pharmacoepidemiology, pharmacoeconomics, the clinical use of medicines, medical devices and laboratory tests, information on medicines and medical devices information, pharmacy services research, medication management, other clinical aspects of pharmacy. IJCP publishes original Research articles, Review articles , Short research reports, Commentaries, book reviews, and Letters to the Editor. International Journal of Clinical Pharmacy is affiliated with the European Society of Clinical Pharmacy (ESCP). ESCP promotes practice and research in Clinical Pharmacy, especially in Europe. The general aim of the society is to advance education, practice and research in Clinical Pharmacy . Until 2010 the journal was called Pharmacy World & Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信