Abby Meyer, Lindsey Mortensen, Kimberly A Miller, Wendy A Miller, Ryan F Fader, Beverly R Wuertz, Frank G Ondrey
{"title":"利用改良人血管瘤组织培养物和人脐静脉内皮细胞培养物,深入了解咪喹莫特治疗婴儿血管瘤的机理。","authors":"Abby Meyer, Lindsey Mortensen, Kimberly A Miller, Wendy A Miller, Ryan F Fader, Beverly R Wuertz, Frank G Ondrey","doi":"10.1007/s11626-024-00978-0","DOIUrl":null,"url":null,"abstract":"<p><p>Infantile hemangiomas (IH) are a common entity encountered by dermatologists, otolaryngologists, and other surgeons. Oral propranolol is a mainstay of treatment for IH and is well-tolerated, though propranolol-refractory IH and other drug-related adverse events are documented and can limit its usage. There are few in vitro testing systems for putative treatment agents. To address this, we modified a tissue culture system for human hemangioma treatment testing to evaluate the treatment impact of the immune modifier, imiquimod. Human umbilical vein endothelial cells (HUVEC) and hemangioma cultures were treated with several concentrations of imiquimod followed by MTT assays, reporter gene assays, PCR, ELISA, and Western blotting for IL-8, VEGF, Cyclin D1, and IFNα and immunohistochemistry for Cyclin D1 and Ki-67. HUVEC showed acute decreases in IL-8, VEGF, and Cyclin D1 promoter activity and increases in IFNα mRNA after imiquimod treatment. Hemangioma samples showed no change in Ki-67 or Cyclin D1 staining after treatment with imiquimod after 27 d, with significantly increased IL-8 and VEGF. From this preliminary analysis, we discerned that hemangioma tissues can be grown in tissue culture and used for drug treatment studies. We also conclude acute and chronic modulation of cell cycle, angiogenesis factors, and immunostimulatory conditions may be associated with imiquimod mechanisms of action in hemangioma involution.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of modified human hemangioma tissue cultures and human umbilical vein endothelial cell cultures to gain mechanistic insights into imiquimod treatment for infantile hemangioma.\",\"authors\":\"Abby Meyer, Lindsey Mortensen, Kimberly A Miller, Wendy A Miller, Ryan F Fader, Beverly R Wuertz, Frank G Ondrey\",\"doi\":\"10.1007/s11626-024-00978-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infantile hemangiomas (IH) are a common entity encountered by dermatologists, otolaryngologists, and other surgeons. Oral propranolol is a mainstay of treatment for IH and is well-tolerated, though propranolol-refractory IH and other drug-related adverse events are documented and can limit its usage. There are few in vitro testing systems for putative treatment agents. To address this, we modified a tissue culture system for human hemangioma treatment testing to evaluate the treatment impact of the immune modifier, imiquimod. Human umbilical vein endothelial cells (HUVEC) and hemangioma cultures were treated with several concentrations of imiquimod followed by MTT assays, reporter gene assays, PCR, ELISA, and Western blotting for IL-8, VEGF, Cyclin D1, and IFNα and immunohistochemistry for Cyclin D1 and Ki-67. HUVEC showed acute decreases in IL-8, VEGF, and Cyclin D1 promoter activity and increases in IFNα mRNA after imiquimod treatment. Hemangioma samples showed no change in Ki-67 or Cyclin D1 staining after treatment with imiquimod after 27 d, with significantly increased IL-8 and VEGF. From this preliminary analysis, we discerned that hemangioma tissues can be grown in tissue culture and used for drug treatment studies. We also conclude acute and chronic modulation of cell cycle, angiogenesis factors, and immunostimulatory conditions may be associated with imiquimod mechanisms of action in hemangioma involution.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00978-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00978-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Use of modified human hemangioma tissue cultures and human umbilical vein endothelial cell cultures to gain mechanistic insights into imiquimod treatment for infantile hemangioma.
Infantile hemangiomas (IH) are a common entity encountered by dermatologists, otolaryngologists, and other surgeons. Oral propranolol is a mainstay of treatment for IH and is well-tolerated, though propranolol-refractory IH and other drug-related adverse events are documented and can limit its usage. There are few in vitro testing systems for putative treatment agents. To address this, we modified a tissue culture system for human hemangioma treatment testing to evaluate the treatment impact of the immune modifier, imiquimod. Human umbilical vein endothelial cells (HUVEC) and hemangioma cultures were treated with several concentrations of imiquimod followed by MTT assays, reporter gene assays, PCR, ELISA, and Western blotting for IL-8, VEGF, Cyclin D1, and IFNα and immunohistochemistry for Cyclin D1 and Ki-67. HUVEC showed acute decreases in IL-8, VEGF, and Cyclin D1 promoter activity and increases in IFNα mRNA after imiquimod treatment. Hemangioma samples showed no change in Ki-67 or Cyclin D1 staining after treatment with imiquimod after 27 d, with significantly increased IL-8 and VEGF. From this preliminary analysis, we discerned that hemangioma tissues can be grown in tissue culture and used for drug treatment studies. We also conclude acute and chronic modulation of cell cycle, angiogenesis factors, and immunostimulatory conditions may be associated with imiquimod mechanisms of action in hemangioma involution.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.