{"title":"组装有日期的生命之树所面临的挑战。","authors":"Carlos G Schrago, Beatriz Mello","doi":"10.1093/gbe/evae229","DOIUrl":null,"url":null,"abstract":"<p><p>The assembly of a comprehensive and dated Tree of Life (ToL) remains one of the most formidable challenges in evolutionary biology. The complexity of life's history, involving both vertical and horizontal transmission of genetic information, defies its representation by a simple bifurcating phylogeny. With the advent of genome and metagenome sequencing, vast amounts of data have become available. However, employing this information for phylogeny and divergence time inference has introduced significant theoretical and computational hurdles. This perspective addresses some key methodological challenges in assembling the dated ToL, namely, the identification and classification of homologous genes, accounting for gene tree-species tree mismatch due to population-level processes along with duplication, loss, and horizontal gene transfer, and the accurate dating of evolutionary events. Ultimately, the success of this endeavor requires new approaches that integrate knowledge databases with optimized phylogenetic algorithms capable of managing complex evolutionary models.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"16 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523137/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges in Assembling the Dated Tree of Life.\",\"authors\":\"Carlos G Schrago, Beatriz Mello\",\"doi\":\"10.1093/gbe/evae229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The assembly of a comprehensive and dated Tree of Life (ToL) remains one of the most formidable challenges in evolutionary biology. The complexity of life's history, involving both vertical and horizontal transmission of genetic information, defies its representation by a simple bifurcating phylogeny. With the advent of genome and metagenome sequencing, vast amounts of data have become available. However, employing this information for phylogeny and divergence time inference has introduced significant theoretical and computational hurdles. This perspective addresses some key methodological challenges in assembling the dated ToL, namely, the identification and classification of homologous genes, accounting for gene tree-species tree mismatch due to population-level processes along with duplication, loss, and horizontal gene transfer, and the accurate dating of evolutionary events. Ultimately, the success of this endeavor requires new approaches that integrate knowledge databases with optimized phylogenetic algorithms capable of managing complex evolutionary models.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523137/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae229\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae229","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在进化生物学中,建立一个全面的、标明年代的生命树(ToL)仍然是最艰巨的挑战之一。生命历史的复杂性涉及遗传信息的纵向和横向传播,因此无法用简单的分叉系统发育来表示。随着基因组和元基因组测序技术的出现,大量的数据可供使用。然而,利用这些信息进行系统发育和分化时间推断,在理论和计算方面都遇到了巨大的障碍。本研究从方法学的角度探讨了构建年代 ToL 所面临的一些关键挑战,即同源基因的鉴定和分类,由于种群水平的复制、丢失和水平基因转移等过程造成的基因树-物种树不匹配,以及进化事件的准确年代。这项工作的成功最终需要新的方法,将知识数据库与能够管理复杂进化模型的优化系统发生学算法结合起来。
The assembly of a comprehensive and dated Tree of Life (ToL) remains one of the most formidable challenges in evolutionary biology. The complexity of life's history, involving both vertical and horizontal transmission of genetic information, defies its representation by a simple bifurcating phylogeny. With the advent of genome and metagenome sequencing, vast amounts of data have become available. However, employing this information for phylogeny and divergence time inference has introduced significant theoretical and computational hurdles. This perspective addresses some key methodological challenges in assembling the dated ToL, namely, the identification and classification of homologous genes, accounting for gene tree-species tree mismatch due to population-level processes along with duplication, loss, and horizontal gene transfer, and the accurate dating of evolutionary events. Ultimately, the success of this endeavor requires new approaches that integrate knowledge databases with optimized phylogenetic algorithms capable of managing complex evolutionary models.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.