{"title":"YOLO-Leaf 的精准农业:检测苹果叶片病害的先进方法。","authors":"Tong Li, Liyuan Zhang, Jianchu Lin","doi":"10.3389/fpls.2024.1452502","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of apple leaf diseases plays a crucial role in ensuring crop health and yield. However, due to variations in lighting and shadow, as well as the complex relationships between perceptual fields and target scales, current detection methods face significant challenges. To address these issues, we propose a new model called YOLO-Leaf. Specifically, YOLO-Leaf utilizes Dynamic Snake Convolution (DSConv) for robust feature extraction, employs BiFormer to enhance the attention mechanism, and introduces IF-CIoU to improve bounding box regression for increased detection accuracy and generalization ability. Experimental results on the FGVC7 and FGVC8 datasets show that YOLO-Leaf significantly outperforms existing models in terms of detection accuracy, achieving mAP50 scores of 93.88% and 95.69%, respectively. This advancement not only validates the effectiveness of our approach but also highlights its practical application potential in agricultural disease detection.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518753/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precision agriculture with YOLO-Leaf: advanced methods for detecting apple leaf diseases.\",\"authors\":\"Tong Li, Liyuan Zhang, Jianchu Lin\",\"doi\":\"10.3389/fpls.2024.1452502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection of apple leaf diseases plays a crucial role in ensuring crop health and yield. However, due to variations in lighting and shadow, as well as the complex relationships between perceptual fields and target scales, current detection methods face significant challenges. To address these issues, we propose a new model called YOLO-Leaf. Specifically, YOLO-Leaf utilizes Dynamic Snake Convolution (DSConv) for robust feature extraction, employs BiFormer to enhance the attention mechanism, and introduces IF-CIoU to improve bounding box regression for increased detection accuracy and generalization ability. Experimental results on the FGVC7 and FGVC8 datasets show that YOLO-Leaf significantly outperforms existing models in terms of detection accuracy, achieving mAP50 scores of 93.88% and 95.69%, respectively. This advancement not only validates the effectiveness of our approach but also highlights its practical application potential in agricultural disease detection.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2024.1452502\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1452502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Precision agriculture with YOLO-Leaf: advanced methods for detecting apple leaf diseases.
The detection of apple leaf diseases plays a crucial role in ensuring crop health and yield. However, due to variations in lighting and shadow, as well as the complex relationships between perceptual fields and target scales, current detection methods face significant challenges. To address these issues, we propose a new model called YOLO-Leaf. Specifically, YOLO-Leaf utilizes Dynamic Snake Convolution (DSConv) for robust feature extraction, employs BiFormer to enhance the attention mechanism, and introduces IF-CIoU to improve bounding box regression for increased detection accuracy and generalization ability. Experimental results on the FGVC7 and FGVC8 datasets show that YOLO-Leaf significantly outperforms existing models in terms of detection accuracy, achieving mAP50 scores of 93.88% and 95.69%, respectively. This advancement not only validates the effectiveness of our approach but also highlights its practical application potential in agricultural disease detection.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.