{"title":"粪肠球菌及其胞外囊泡对乙醇引起的肠道损伤的保护作用","authors":"Meiying Luo, Suqian Li, Junhang Sun, Limin Wei, Xin Feng, Huihua Zhang, Qien Qi","doi":"10.1089/fpd.2024.0061","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we examined the impact of <i>Enterococcus faecium</i> (<i>E. faecium,</i> Efm) and its extracellular vesicles (EVs) on intestinal morphological structure, antioxidant function, inflammatory response, and permeability in rats. In a 5-day feeding experiment, a total of 72 female Sprague Dawley (SD) rats were randomly allotted into nine groups with eight rats per group. The study was conducted in three parts. First, we examined the impact of Efm on ethanol-induced intestinal injury. Second, we investigated the protective effects of various active components of bacterial culture on intestinal function <i>in vivo</i>. Third, we explored the impact of Efm with elevated EV secretion on intestinal function. The rats were treated by gavage administration (5 mL/kg body weight [BW]) every other day for a total of three times. After the last treatment at 2 h, the phosphate buffered saline (PBS) group received 5 mL/kg BW of PBS orally, whereas the other groups were orally administered 5 mL/kg BW of absolute ethanol to induce intestinal injury. After the feeding trial, eight rats per treatment were collected for intestinal samples. Our findings demonstrate that pretreatment with Efm can reverse morphological alterations in intestinal tissues, enhance superoxide dismutase/malondialdehyde levels, increase intestinal permeability, and reduce the inflammation levels, thereby regulating intestinal damage. Pretreatment with EfmEVs reversed the detrimental effects of ethanol-induced intestinal damage, displaying a discernible decline in inflammation, augmented permeability, and bolstered antioxidant capacity. Moreover, the release of EVs contributes to the intestinal safeguarding mechanism of Efm. EVs act as mediators in Efm's protective response against ethanol-induced intestinal injury by mitigating inflammation and enhancing antioxidant activity. The Clinical Trial Registration Number: FOSU210403.</p>","PeriodicalId":12333,"journal":{"name":"Foodborne pathogens and disease","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Effect of <i>Enterococcus faecium</i> and Its Extracellular Vesicles Against Ethanol-Induced Intestinal Injury.\",\"authors\":\"Meiying Luo, Suqian Li, Junhang Sun, Limin Wei, Xin Feng, Huihua Zhang, Qien Qi\",\"doi\":\"10.1089/fpd.2024.0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we examined the impact of <i>Enterococcus faecium</i> (<i>E. faecium,</i> Efm) and its extracellular vesicles (EVs) on intestinal morphological structure, antioxidant function, inflammatory response, and permeability in rats. In a 5-day feeding experiment, a total of 72 female Sprague Dawley (SD) rats were randomly allotted into nine groups with eight rats per group. The study was conducted in three parts. First, we examined the impact of Efm on ethanol-induced intestinal injury. Second, we investigated the protective effects of various active components of bacterial culture on intestinal function <i>in vivo</i>. Third, we explored the impact of Efm with elevated EV secretion on intestinal function. The rats were treated by gavage administration (5 mL/kg body weight [BW]) every other day for a total of three times. After the last treatment at 2 h, the phosphate buffered saline (PBS) group received 5 mL/kg BW of PBS orally, whereas the other groups were orally administered 5 mL/kg BW of absolute ethanol to induce intestinal injury. After the feeding trial, eight rats per treatment were collected for intestinal samples. Our findings demonstrate that pretreatment with Efm can reverse morphological alterations in intestinal tissues, enhance superoxide dismutase/malondialdehyde levels, increase intestinal permeability, and reduce the inflammation levels, thereby regulating intestinal damage. Pretreatment with EfmEVs reversed the detrimental effects of ethanol-induced intestinal damage, displaying a discernible decline in inflammation, augmented permeability, and bolstered antioxidant capacity. Moreover, the release of EVs contributes to the intestinal safeguarding mechanism of Efm. EVs act as mediators in Efm's protective response against ethanol-induced intestinal injury by mitigating inflammation and enhancing antioxidant activity. The Clinical Trial Registration Number: FOSU210403.</p>\",\"PeriodicalId\":12333,\"journal\":{\"name\":\"Foodborne pathogens and disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foodborne pathogens and disease\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1089/fpd.2024.0061\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foodborne pathogens and disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/fpd.2024.0061","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Protective Effect of Enterococcus faecium and Its Extracellular Vesicles Against Ethanol-Induced Intestinal Injury.
In this study, we examined the impact of Enterococcus faecium (E. faecium, Efm) and its extracellular vesicles (EVs) on intestinal morphological structure, antioxidant function, inflammatory response, and permeability in rats. In a 5-day feeding experiment, a total of 72 female Sprague Dawley (SD) rats were randomly allotted into nine groups with eight rats per group. The study was conducted in three parts. First, we examined the impact of Efm on ethanol-induced intestinal injury. Second, we investigated the protective effects of various active components of bacterial culture on intestinal function in vivo. Third, we explored the impact of Efm with elevated EV secretion on intestinal function. The rats were treated by gavage administration (5 mL/kg body weight [BW]) every other day for a total of three times. After the last treatment at 2 h, the phosphate buffered saline (PBS) group received 5 mL/kg BW of PBS orally, whereas the other groups were orally administered 5 mL/kg BW of absolute ethanol to induce intestinal injury. After the feeding trial, eight rats per treatment were collected for intestinal samples. Our findings demonstrate that pretreatment with Efm can reverse morphological alterations in intestinal tissues, enhance superoxide dismutase/malondialdehyde levels, increase intestinal permeability, and reduce the inflammation levels, thereby regulating intestinal damage. Pretreatment with EfmEVs reversed the detrimental effects of ethanol-induced intestinal damage, displaying a discernible decline in inflammation, augmented permeability, and bolstered antioxidant capacity. Moreover, the release of EVs contributes to the intestinal safeguarding mechanism of Efm. EVs act as mediators in Efm's protective response against ethanol-induced intestinal injury by mitigating inflammation and enhancing antioxidant activity. The Clinical Trial Registration Number: FOSU210403.
期刊介绍:
Foodborne Pathogens and Disease is one of the most inclusive scientific publications on the many disciplines that contribute to food safety. Spanning an array of issues from "farm-to-fork," the Journal bridges the gap between science and policy to reduce the burden of foodborne illness worldwide.
Foodborne Pathogens and Disease coverage includes:
Agroterrorism
Safety of organically grown and genetically modified foods
Emerging pathogens
Emergence of drug resistance
Methods and technology for rapid and accurate detection
Strategies to destroy or control foodborne pathogens
Novel strategies for the prevention and control of plant and animal diseases that impact food safety
Biosecurity issues and the implications of new regulatory guidelines
Impact of changing lifestyles and consumer demands on food safety.