在二级预防风险评估中加入传统和新兴生物标记物:一项针对 20656 名心血管疾病患者的前瞻性队列研究。

IF 8.4 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Ike Dhiah Rochmawati, Salil Deo, Jennifer S Lees, Patrick B Mark, Naveed Sattar, Carlos Celis-Morales, Jill P Pell, Paul Welsh, Frederick K Ho
{"title":"在二级预防风险评估中加入传统和新兴生物标记物:一项针对 20656 名心血管疾病患者的前瞻性队列研究。","authors":"Ike Dhiah Rochmawati, Salil Deo, Jennifer S Lees, Patrick B Mark, Naveed Sattar, Carlos Celis-Morales, Jill P Pell, Paul Welsh, Frederick K Ho","doi":"10.1093/eurjpc/zwae352","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to explore whether conventional and emerging biomarkers could improve risk discrimination and calibration in secondary prevention of recurrent atherosclerotic cardiovascular disease (ASCVD), based on a model using predictors from SMART2.</p><p><strong>Methods: </strong>In a cohort of 20,658 UK Biobank participants with medical history of ASCVD, we analysed any improvement in C indices and net reclassification index (NRI) for future ASCVD events, following addition of LP-a, ApoB, cystatin C, HbA1c, GGT, AST, ALT, and ALP, to a model with predictors used in SMART2 for the outcome of recurrent major cardiovascular event. We also examined any improvement in C indices and NRIs replacing creatinine based estimated glomerular filtration rate (eGFR) with cystatin C based estimates. Calibration plots between different models were also compared.</p><p><strong>Results: </strong>Compared with the baseline model (C index=0.663), modest increment in C indices were observed when adding HbA1c (ΔC=0.0064, p<0.001), cystatin C (ΔC=0.0037, p<0.001), GGT (ΔC=0.0023, p<0.001), AST (ΔC= 0.0007, p<0.005) or ALP (ΔC=0.0010, p<0.001) or replacing eGFRCr with eGFRCysC (ΔC=0.0036, p<0.001) or eGFRCr-CysC (ΔC=0.00336, p<0.001). Similarly, the strongest improvements in NRI were observed with the addition of HbA1c (NRI=0.014), or cystatin C (NRI= 0.006) or replacing eGFRCr with eGFRCr-CysC (NRI=0.001) or eGFRCysC (NRI=0.002). There was no evidence that adding biomarkers modify calibration.</p><p><strong>Conclusions: </strong>Adding several biomarkers, most notably cystatin C and HbA1c, but not LP-a, in a model using SMART2 predictors modestly improved discrimination.</p>","PeriodicalId":12051,"journal":{"name":"European journal of preventive cardiology","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding traditional and emerging biomarkers for risk assessment in secondary prevention: A prospective cohort study of 20,656 patients with cardiovascular disease.\",\"authors\":\"Ike Dhiah Rochmawati, Salil Deo, Jennifer S Lees, Patrick B Mark, Naveed Sattar, Carlos Celis-Morales, Jill P Pell, Paul Welsh, Frederick K Ho\",\"doi\":\"10.1093/eurjpc/zwae352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aims to explore whether conventional and emerging biomarkers could improve risk discrimination and calibration in secondary prevention of recurrent atherosclerotic cardiovascular disease (ASCVD), based on a model using predictors from SMART2.</p><p><strong>Methods: </strong>In a cohort of 20,658 UK Biobank participants with medical history of ASCVD, we analysed any improvement in C indices and net reclassification index (NRI) for future ASCVD events, following addition of LP-a, ApoB, cystatin C, HbA1c, GGT, AST, ALT, and ALP, to a model with predictors used in SMART2 for the outcome of recurrent major cardiovascular event. We also examined any improvement in C indices and NRIs replacing creatinine based estimated glomerular filtration rate (eGFR) with cystatin C based estimates. Calibration plots between different models were also compared.</p><p><strong>Results: </strong>Compared with the baseline model (C index=0.663), modest increment in C indices were observed when adding HbA1c (ΔC=0.0064, p<0.001), cystatin C (ΔC=0.0037, p<0.001), GGT (ΔC=0.0023, p<0.001), AST (ΔC= 0.0007, p<0.005) or ALP (ΔC=0.0010, p<0.001) or replacing eGFRCr with eGFRCysC (ΔC=0.0036, p<0.001) or eGFRCr-CysC (ΔC=0.00336, p<0.001). Similarly, the strongest improvements in NRI were observed with the addition of HbA1c (NRI=0.014), or cystatin C (NRI= 0.006) or replacing eGFRCr with eGFRCr-CysC (NRI=0.001) or eGFRCysC (NRI=0.002). There was no evidence that adding biomarkers modify calibration.</p><p><strong>Conclusions: </strong>Adding several biomarkers, most notably cystatin C and HbA1c, but not LP-a, in a model using SMART2 predictors modestly improved discrimination.</p>\",\"PeriodicalId\":12051,\"journal\":{\"name\":\"European journal of preventive cardiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of preventive cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/eurjpc/zwae352\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of preventive cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurjpc/zwae352","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究旨在探讨传统和新兴生物标志物是否能改善复发性动脉粥样硬化性心血管疾病(ASCVD)二级预防中的风险识别和校准,该模型基于 SMART2 的预测因子:在英国生物库 20658 名有 ASCVD 病史的参与者队列中,我们分析了将 LP-a、载脂蛋白 B、胱抑素 C、HbA1c、谷丙转氨酶、谷草转氨酶、谷草转氨酶和谷丙转氨酶添加到 SMART2 中使用的预测复发性主要心血管事件结果的模型中后,未来 ASCVD 事件的 C 指数和净重分类指数 (NRI) 是否有所改善。我们还研究了用基于胱抑素 C 的估计值取代基于肌酐的肾小球滤过率(eGFR)后,C 指数和 NRI 是否有所改善。我们还比较了不同模型之间的校准图:结果:与基线模型(C 指数=0.663)相比,加入 HbA1c 后,C 指数略有增加(ΔC=0.0064,pConclusions):在使用 SMART2 预测因子的模型中添加几种生物标志物,尤其是胱抑素 C 和 HbA1c,而不是 LP-a,可适度提高辨别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adding traditional and emerging biomarkers for risk assessment in secondary prevention: A prospective cohort study of 20,656 patients with cardiovascular disease.

Background: This study aims to explore whether conventional and emerging biomarkers could improve risk discrimination and calibration in secondary prevention of recurrent atherosclerotic cardiovascular disease (ASCVD), based on a model using predictors from SMART2.

Methods: In a cohort of 20,658 UK Biobank participants with medical history of ASCVD, we analysed any improvement in C indices and net reclassification index (NRI) for future ASCVD events, following addition of LP-a, ApoB, cystatin C, HbA1c, GGT, AST, ALT, and ALP, to a model with predictors used in SMART2 for the outcome of recurrent major cardiovascular event. We also examined any improvement in C indices and NRIs replacing creatinine based estimated glomerular filtration rate (eGFR) with cystatin C based estimates. Calibration plots between different models were also compared.

Results: Compared with the baseline model (C index=0.663), modest increment in C indices were observed when adding HbA1c (ΔC=0.0064, p<0.001), cystatin C (ΔC=0.0037, p<0.001), GGT (ΔC=0.0023, p<0.001), AST (ΔC= 0.0007, p<0.005) or ALP (ΔC=0.0010, p<0.001) or replacing eGFRCr with eGFRCysC (ΔC=0.0036, p<0.001) or eGFRCr-CysC (ΔC=0.00336, p<0.001). Similarly, the strongest improvements in NRI were observed with the addition of HbA1c (NRI=0.014), or cystatin C (NRI= 0.006) or replacing eGFRCr with eGFRCr-CysC (NRI=0.001) or eGFRCysC (NRI=0.002). There was no evidence that adding biomarkers modify calibration.

Conclusions: Adding several biomarkers, most notably cystatin C and HbA1c, but not LP-a, in a model using SMART2 predictors modestly improved discrimination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European journal of preventive cardiology
European journal of preventive cardiology CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
12.50
自引率
12.00%
发文量
601
审稿时长
3-8 weeks
期刊介绍: European Journal of Preventive Cardiology (EJPC) is an official journal of the European Society of Cardiology (ESC) and the European Association of Preventive Cardiology (EAPC). The journal covers a wide range of scientific, clinical, and public health disciplines related to cardiovascular disease prevention, risk factor management, cardiovascular rehabilitation, population science and public health, and exercise physiology. The categories covered by the journal include classical risk factors and treatment, lifestyle risk factors, non-modifiable cardiovascular risk factors, cardiovascular conditions, concomitant pathological conditions, sport cardiology, diagnostic tests, care settings, epidemiology, pharmacology and pharmacotherapy, machine learning, and artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信