Fang Liu, Jun Ying, Kai Yang, Xinyuan Xiong, Nan Yang, Shu Wang, Wenzhen Zhao, Huiqin Zhu, Ming Yu, Jun Wu, Jie Yang, Xiaonan Wang, Xuxu Sun
{"title":"破译 ARID1A 错义突变在癌症中的调控机制和生物学意义。","authors":"Fang Liu, Jun Ying, Kai Yang, Xinyuan Xiong, Nan Yang, Shu Wang, Wenzhen Zhao, Huiqin Zhu, Ming Yu, Jun Wu, Jie Yang, Xiaonan Wang, Xuxu Sun","doi":"10.1016/j.celrep.2024.114916","DOIUrl":null,"url":null,"abstract":"<p><p>ARID1A is a key component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex and functions as a critical tumor suppressor in various cancers. In this study, we find that tumor cells with hotspot missense mutations in ARID1A (AT-rich interactive domain-containing protein 1A) exhibit a malignant phenotype. Mechanistically, these mutations facilitate the translocation of ARID1A mutant proteins to the cytoplasm by the nucleocytoplasmic shuttler XPO1 (exportin 1). Subsequently, the E3 ubiquitin ligase STUB1 ubiquitinates the ARID1A mutant protein, marking it for degradation. Knocking down STUB1 or inhibiting XPO1 stabilizes the ARID1A mutant protein, retaining it in the nucleus, which restores the assembly of the cBAF complex, the chromatin remodeling function, and the normal expression of genes related to the MAPK and anti-apoptotic pathways, thereby decreasing the tumor burden. Our research shows that nuclear-localized mutated ARID1A proteins retain tumor-suppressive function. We identify promising strategies to treat cancers harboring missense mutations in the BAF complex.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114916"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the regulatory mechanisms and biological implications of ARID1A missense mutations in cancer.\",\"authors\":\"Fang Liu, Jun Ying, Kai Yang, Xinyuan Xiong, Nan Yang, Shu Wang, Wenzhen Zhao, Huiqin Zhu, Ming Yu, Jun Wu, Jie Yang, Xiaonan Wang, Xuxu Sun\",\"doi\":\"10.1016/j.celrep.2024.114916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ARID1A is a key component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex and functions as a critical tumor suppressor in various cancers. In this study, we find that tumor cells with hotspot missense mutations in ARID1A (AT-rich interactive domain-containing protein 1A) exhibit a malignant phenotype. Mechanistically, these mutations facilitate the translocation of ARID1A mutant proteins to the cytoplasm by the nucleocytoplasmic shuttler XPO1 (exportin 1). Subsequently, the E3 ubiquitin ligase STUB1 ubiquitinates the ARID1A mutant protein, marking it for degradation. Knocking down STUB1 or inhibiting XPO1 stabilizes the ARID1A mutant protein, retaining it in the nucleus, which restores the assembly of the cBAF complex, the chromatin remodeling function, and the normal expression of genes related to the MAPK and anti-apoptotic pathways, thereby decreasing the tumor burden. Our research shows that nuclear-localized mutated ARID1A proteins retain tumor-suppressive function. We identify promising strategies to treat cancers harboring missense mutations in the BAF complex.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"43 11\",\"pages\":\"114916\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114916\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114916","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Deciphering the regulatory mechanisms and biological implications of ARID1A missense mutations in cancer.
ARID1A is a key component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex and functions as a critical tumor suppressor in various cancers. In this study, we find that tumor cells with hotspot missense mutations in ARID1A (AT-rich interactive domain-containing protein 1A) exhibit a malignant phenotype. Mechanistically, these mutations facilitate the translocation of ARID1A mutant proteins to the cytoplasm by the nucleocytoplasmic shuttler XPO1 (exportin 1). Subsequently, the E3 ubiquitin ligase STUB1 ubiquitinates the ARID1A mutant protein, marking it for degradation. Knocking down STUB1 or inhibiting XPO1 stabilizes the ARID1A mutant protein, retaining it in the nucleus, which restores the assembly of the cBAF complex, the chromatin remodeling function, and the normal expression of genes related to the MAPK and anti-apoptotic pathways, thereby decreasing the tumor burden. Our research shows that nuclear-localized mutated ARID1A proteins retain tumor-suppressive function. We identify promising strategies to treat cancers harboring missense mutations in the BAF complex.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.