Augustine Jing Jie Koh, Maytham Hussein, Varsha Thombare, Simon Crawford, Jian Li, Tony Velkov
{"title":"Leu10-teixobactin和头孢吡肟对耐多药金黄色葡萄球菌的协同作用潜力。","authors":"Augustine Jing Jie Koh, Maytham Hussein, Varsha Thombare, Simon Crawford, Jian Li, Tony Velkov","doi":"10.1186/s12866-024-03577-x","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus (S. aureus) is a significant Gram-positive opportunistic pathogen behind many debilitating infections. β-lactam antibiotics are conventionally prescribed for treating S. aureus infections. However, the adaptability of S. aureus in evolving resistance to multiple β-lactams contributed to the persistence and spread of infections, exemplified in the emergence of methicillin-resistant S. aureus (MRSA). In the present study, we investigated the efficacies of the synthetic teixobactin analogue, Leu<sub>10</sub>-teixobactin, combined with the penicillinase-resistant cephalosporin cefepime against MRSA strains. The Leu<sub>10</sub>-teixobactin and cefepime combination exerted synergism against most strains tested in broth microdilution assay. Time-kill profiles showed that both Leu<sub>10</sub>-teixobactin and cefepime predominantly exhibited synergistic activity, with > 2.0-log<sub>10</sub>CFU decrease compared to monotherapy at 24 h. Moreover, biofilm assays revealed a significant inhibition of biofilm production in ATCC™43300 cells treated with sub-MICs of Leu<sub>10</sub>-teixobactin and cefepime. Subsequent electron microscopy studies showed more extensive damage with the combination therapy compared to monotherapies, including aberrant bacterial morphology, vesicle formation and substantial lysis, indicating combined damage to the cell wall. Quantitative real-time PCR revealed marked perturbation of genes mecA, sarA, atlA, and icaA, substantiating the apparent mode of combined antibacterial action of both antibiotics against peptidoglycan synthesis and initial biofilm production. Hence, the study highlights the prospective utility of the Leu<sub>10</sub>-teixobactin-cefepime combination in treating MRSA infections via β-lactam potentiation.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"24 1","pages":"442"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520699/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synergistic potential of Leu<sub>10</sub>-teixobactin and cefepime against multidrug-resistant Staphylococcus aureus.\",\"authors\":\"Augustine Jing Jie Koh, Maytham Hussein, Varsha Thombare, Simon Crawford, Jian Li, Tony Velkov\",\"doi\":\"10.1186/s12866-024-03577-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Staphylococcus aureus (S. aureus) is a significant Gram-positive opportunistic pathogen behind many debilitating infections. β-lactam antibiotics are conventionally prescribed for treating S. aureus infections. However, the adaptability of S. aureus in evolving resistance to multiple β-lactams contributed to the persistence and spread of infections, exemplified in the emergence of methicillin-resistant S. aureus (MRSA). In the present study, we investigated the efficacies of the synthetic teixobactin analogue, Leu<sub>10</sub>-teixobactin, combined with the penicillinase-resistant cephalosporin cefepime against MRSA strains. The Leu<sub>10</sub>-teixobactin and cefepime combination exerted synergism against most strains tested in broth microdilution assay. Time-kill profiles showed that both Leu<sub>10</sub>-teixobactin and cefepime predominantly exhibited synergistic activity, with > 2.0-log<sub>10</sub>CFU decrease compared to monotherapy at 24 h. Moreover, biofilm assays revealed a significant inhibition of biofilm production in ATCC™43300 cells treated with sub-MICs of Leu<sub>10</sub>-teixobactin and cefepime. Subsequent electron microscopy studies showed more extensive damage with the combination therapy compared to monotherapies, including aberrant bacterial morphology, vesicle formation and substantial lysis, indicating combined damage to the cell wall. Quantitative real-time PCR revealed marked perturbation of genes mecA, sarA, atlA, and icaA, substantiating the apparent mode of combined antibacterial action of both antibiotics against peptidoglycan synthesis and initial biofilm production. Hence, the study highlights the prospective utility of the Leu<sub>10</sub>-teixobactin-cefepime combination in treating MRSA infections via β-lactam potentiation.</p>\",\"PeriodicalId\":9233,\"journal\":{\"name\":\"BMC Microbiology\",\"volume\":\"24 1\",\"pages\":\"442\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520699/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12866-024-03577-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-024-03577-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Synergistic potential of Leu10-teixobactin and cefepime against multidrug-resistant Staphylococcus aureus.
Staphylococcus aureus (S. aureus) is a significant Gram-positive opportunistic pathogen behind many debilitating infections. β-lactam antibiotics are conventionally prescribed for treating S. aureus infections. However, the adaptability of S. aureus in evolving resistance to multiple β-lactams contributed to the persistence and spread of infections, exemplified in the emergence of methicillin-resistant S. aureus (MRSA). In the present study, we investigated the efficacies of the synthetic teixobactin analogue, Leu10-teixobactin, combined with the penicillinase-resistant cephalosporin cefepime against MRSA strains. The Leu10-teixobactin and cefepime combination exerted synergism against most strains tested in broth microdilution assay. Time-kill profiles showed that both Leu10-teixobactin and cefepime predominantly exhibited synergistic activity, with > 2.0-log10CFU decrease compared to monotherapy at 24 h. Moreover, biofilm assays revealed a significant inhibition of biofilm production in ATCC™43300 cells treated with sub-MICs of Leu10-teixobactin and cefepime. Subsequent electron microscopy studies showed more extensive damage with the combination therapy compared to monotherapies, including aberrant bacterial morphology, vesicle formation and substantial lysis, indicating combined damage to the cell wall. Quantitative real-time PCR revealed marked perturbation of genes mecA, sarA, atlA, and icaA, substantiating the apparent mode of combined antibacterial action of both antibiotics against peptidoglycan synthesis and initial biofilm production. Hence, the study highlights the prospective utility of the Leu10-teixobactin-cefepime combination in treating MRSA infections via β-lactam potentiation.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.