Esraa Y Abd-Elhamed, Tawfik Abd El-Rahman El-Bassiony, Wallaa M Elsherif, Eman M Shaker
{"title":"提高拉斯奶酪的安全性:尼辛及其纳米颗粒对黄曲霉菌的抗真菌作用。","authors":"Esraa Y Abd-Elhamed, Tawfik Abd El-Rahman El-Bassiony, Wallaa M Elsherif, Eman M Shaker","doi":"10.1186/s12917-024-04323-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to the adverse effects of industrial chemicals and their carcinogenicity and toxicity for humans, the debates have increased on using natural preservatives. This study was conducted to investigate the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against Aspergillus flavus in vivo by inoculation in laboratory-manufactured Ras cheese. A novel, safe, and natural approach of nanoprecipitation using acetic acid was employed to prepare nisin nanoparticles. The prepared NPs were characterized using zeta-sizer, FTIR, and transmission electron microscopy (TEM). Furthermore, the cytotoxicity of nisin NPs on Vero cells was assessed. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined in vitro against A. flavus isolates using the agar well-diffusion method. The sensory evaluation of manufactured Ras cheese was conducted over a 60-day storage period.</p><p><strong>Results: </strong>The obtained results showed a strong antifungal activity of nisin NPs (0.0625 mg/mL) against A. flavus strain in comparison with pure nisin (0.5 mg/mL). Notably, the count decreased gradually by time from 2 × 10<sup>8</sup> at zero time and could not be detected at the 7th week. The count with pure nisin decreased from 2 × 10<sup>8</sup> at zero time and could not be detected at the 10th week where it's enough time to produce aflatoxins in cheese. The MICs of nisin and nisin NPs were 0.25 and 0.0313 mg/mL, respectively. Nisin NPs used in our experiment had good biocompatibility and safety for food preservation. Additionally, the sensory parameters of the manufactured Ras cheese inoculated with nisin and nisin NPs were of high overall acceptability (OAA).</p><p><strong>Conclusions: </strong>Overall, the results of this study suggested that adding more concentration (˃0.0625 mg/mL) from nisin nanoparticles during the production of Ras cheese may be a helpful strategy for food preservation against A. flavus in the dairy industry.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520377/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Ras cheese safety: antifungal effects of nisin and its nanoparticles against Aspergillus flavus.\",\"authors\":\"Esraa Y Abd-Elhamed, Tawfik Abd El-Rahman El-Bassiony, Wallaa M Elsherif, Eman M Shaker\",\"doi\":\"10.1186/s12917-024-04323-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Due to the adverse effects of industrial chemicals and their carcinogenicity and toxicity for humans, the debates have increased on using natural preservatives. This study was conducted to investigate the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against Aspergillus flavus in vivo by inoculation in laboratory-manufactured Ras cheese. A novel, safe, and natural approach of nanoprecipitation using acetic acid was employed to prepare nisin nanoparticles. The prepared NPs were characterized using zeta-sizer, FTIR, and transmission electron microscopy (TEM). Furthermore, the cytotoxicity of nisin NPs on Vero cells was assessed. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined in vitro against A. flavus isolates using the agar well-diffusion method. The sensory evaluation of manufactured Ras cheese was conducted over a 60-day storage period.</p><p><strong>Results: </strong>The obtained results showed a strong antifungal activity of nisin NPs (0.0625 mg/mL) against A. flavus strain in comparison with pure nisin (0.5 mg/mL). Notably, the count decreased gradually by time from 2 × 10<sup>8</sup> at zero time and could not be detected at the 7th week. The count with pure nisin decreased from 2 × 10<sup>8</sup> at zero time and could not be detected at the 10th week where it's enough time to produce aflatoxins in cheese. The MICs of nisin and nisin NPs were 0.25 and 0.0313 mg/mL, respectively. Nisin NPs used in our experiment had good biocompatibility and safety for food preservation. Additionally, the sensory parameters of the manufactured Ras cheese inoculated with nisin and nisin NPs were of high overall acceptability (OAA).</p><p><strong>Conclusions: </strong>Overall, the results of this study suggested that adding more concentration (˃0.0625 mg/mL) from nisin nanoparticles during the production of Ras cheese may be a helpful strategy for food preservation against A. flavus in the dairy industry.</p>\",\"PeriodicalId\":9041,\"journal\":{\"name\":\"BMC Veterinary Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520377/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12917-024-04323-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-024-04323-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Enhancing Ras cheese safety: antifungal effects of nisin and its nanoparticles against Aspergillus flavus.
Background: Due to the adverse effects of industrial chemicals and their carcinogenicity and toxicity for humans, the debates have increased on using natural preservatives. This study was conducted to investigate the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against Aspergillus flavus in vivo by inoculation in laboratory-manufactured Ras cheese. A novel, safe, and natural approach of nanoprecipitation using acetic acid was employed to prepare nisin nanoparticles. The prepared NPs were characterized using zeta-sizer, FTIR, and transmission electron microscopy (TEM). Furthermore, the cytotoxicity of nisin NPs on Vero cells was assessed. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined in vitro against A. flavus isolates using the agar well-diffusion method. The sensory evaluation of manufactured Ras cheese was conducted over a 60-day storage period.
Results: The obtained results showed a strong antifungal activity of nisin NPs (0.0625 mg/mL) against A. flavus strain in comparison with pure nisin (0.5 mg/mL). Notably, the count decreased gradually by time from 2 × 108 at zero time and could not be detected at the 7th week. The count with pure nisin decreased from 2 × 108 at zero time and could not be detected at the 10th week where it's enough time to produce aflatoxins in cheese. The MICs of nisin and nisin NPs were 0.25 and 0.0313 mg/mL, respectively. Nisin NPs used in our experiment had good biocompatibility and safety for food preservation. Additionally, the sensory parameters of the manufactured Ras cheese inoculated with nisin and nisin NPs were of high overall acceptability (OAA).
Conclusions: Overall, the results of this study suggested that adding more concentration (˃0.0625 mg/mL) from nisin nanoparticles during the production of Ras cheese may be a helpful strategy for food preservation against A. flavus in the dairy industry.
期刊介绍:
BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.