Stefanie D Pritzl, Alptuğ Ulugöl, Caroline Körösy, Laura Filion, Jan Lipfert
{"title":"利用哈达玛方差进行精确的漂移不变单分子力校准","authors":"Stefanie D Pritzl, Alptuğ Ulugöl, Caroline Körösy, Laura Filion, Jan Lipfert","doi":"10.1016/j.bpj.2024.10.008","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule force spectroscopy (SMFS) techniques play a pivotal role in unraveling the mechanics and conformational transitions of biological macromolecules under external forces. Among these techniques, multiplexed magnetic tweezers (MT) are particularly well suited to probe very small forces, ≤1 pN, critical for studying noncovalent interactions and regulatory conformational changes at the single-molecule level. However, to apply and measure such small forces, a reliable and accurate force-calibration procedure is crucial. Here, we introduce a new approach to calibrate MT based on thermal motion using the Hadamard variance (HV). To test our method, we perform bead-tether Brownian dynamics simulations that mimic our experimental system and compare the performance of the HV method against two established techniques: power spectral density (PSD) and Allan variance (AV) analyses. Our analysis includes an assessment of each method's ability to mitigate common sources of additive noise, such as white and pink noise, as well as drift, which often complicate experimental data analysis. We find that the HV method exhibits overall similar or higher precision and accuracy, yielding lower force estimation errors across a wide range of signal-to-noise ratios (SNRs) and drift speeds compared with the PSD and AV methods. Notably, the HV method remains robust against drift, maintaining consistent uncertainty levels across the entire studied SNR and drift speed spectrum. We also explore the HV method using experimental MT data, where we find overall smaller force estimation errors compared with PSD and AV approaches. Overall, the HV method offers a robust method for achieving sub-pN resolution and precision in multiplexed MT measurements. Its potential extends to other SMFS techniques, presenting exciting opportunities for advancing our understanding of mechanosensitivity and force generation in biological systems. To make our methods widely accessible to the research community, we provide a well-documented Python implementation of the HV method as an extension to the Tweezepy package.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"3964-3976"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate drift-invariant single-molecule force calibration using the Hadamard variance.\",\"authors\":\"Stefanie D Pritzl, Alptuğ Ulugöl, Caroline Körösy, Laura Filion, Jan Lipfert\",\"doi\":\"10.1016/j.bpj.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-molecule force spectroscopy (SMFS) techniques play a pivotal role in unraveling the mechanics and conformational transitions of biological macromolecules under external forces. Among these techniques, multiplexed magnetic tweezers (MT) are particularly well suited to probe very small forces, ≤1 pN, critical for studying noncovalent interactions and regulatory conformational changes at the single-molecule level. However, to apply and measure such small forces, a reliable and accurate force-calibration procedure is crucial. Here, we introduce a new approach to calibrate MT based on thermal motion using the Hadamard variance (HV). To test our method, we perform bead-tether Brownian dynamics simulations that mimic our experimental system and compare the performance of the HV method against two established techniques: power spectral density (PSD) and Allan variance (AV) analyses. Our analysis includes an assessment of each method's ability to mitigate common sources of additive noise, such as white and pink noise, as well as drift, which often complicate experimental data analysis. We find that the HV method exhibits overall similar or higher precision and accuracy, yielding lower force estimation errors across a wide range of signal-to-noise ratios (SNRs) and drift speeds compared with the PSD and AV methods. Notably, the HV method remains robust against drift, maintaining consistent uncertainty levels across the entire studied SNR and drift speed spectrum. We also explore the HV method using experimental MT data, where we find overall smaller force estimation errors compared with PSD and AV approaches. Overall, the HV method offers a robust method for achieving sub-pN resolution and precision in multiplexed MT measurements. Its potential extends to other SMFS techniques, presenting exciting opportunities for advancing our understanding of mechanosensitivity and force generation in biological systems. To make our methods widely accessible to the research community, we provide a well-documented Python implementation of the HV method as an extension to the Tweezepy package.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"3964-3976\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.10.008\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.10.008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Accurate drift-invariant single-molecule force calibration using the Hadamard variance.
Single-molecule force spectroscopy (SMFS) techniques play a pivotal role in unraveling the mechanics and conformational transitions of biological macromolecules under external forces. Among these techniques, multiplexed magnetic tweezers (MT) are particularly well suited to probe very small forces, ≤1 pN, critical for studying noncovalent interactions and regulatory conformational changes at the single-molecule level. However, to apply and measure such small forces, a reliable and accurate force-calibration procedure is crucial. Here, we introduce a new approach to calibrate MT based on thermal motion using the Hadamard variance (HV). To test our method, we perform bead-tether Brownian dynamics simulations that mimic our experimental system and compare the performance of the HV method against two established techniques: power spectral density (PSD) and Allan variance (AV) analyses. Our analysis includes an assessment of each method's ability to mitigate common sources of additive noise, such as white and pink noise, as well as drift, which often complicate experimental data analysis. We find that the HV method exhibits overall similar or higher precision and accuracy, yielding lower force estimation errors across a wide range of signal-to-noise ratios (SNRs) and drift speeds compared with the PSD and AV methods. Notably, the HV method remains robust against drift, maintaining consistent uncertainty levels across the entire studied SNR and drift speed spectrum. We also explore the HV method using experimental MT data, where we find overall smaller force estimation errors compared with PSD and AV approaches. Overall, the HV method offers a robust method for achieving sub-pN resolution and precision in multiplexed MT measurements. Its potential extends to other SMFS techniques, presenting exciting opportunities for advancing our understanding of mechanosensitivity and force generation in biological systems. To make our methods widely accessible to the research community, we provide a well-documented Python implementation of the HV method as an extension to the Tweezepy package.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.