Egbujo Ejike Amina, James O Adisa, Solomon Matthias Gamde, Etinosa Beauty Omoruyi, Habauka M Kwaambwa, Lamech M Mwapagha
{"title":"辣木叶水提取物对糖尿病 Wistar 大鼠的降血糖作用评估","authors":"Egbujo Ejike Amina, James O Adisa, Solomon Matthias Gamde, Etinosa Beauty Omoruyi, Habauka M Kwaambwa, Lamech M Mwapagha","doi":"10.1155/2024/9779021","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> <i>Moringa oleifera</i> leaf is used for diabetes due to its pharmacologic effects. Patients with hyperglycemia experience beta cell destruction. However, no research on risk awareness has been done to ascertain its safety. The present study describes the antidiabetic effect of <i>Moringa oleifera</i> leaf, such as the protection of pancreatic beta cells and the induction of glycogen synthesis, before addressing the secondary effects of diabetes, such as hepatic and renal toxicity. <b>Methods:</b> Forty-five Wistar rats weighed 160 ± 10 g were divided into nine groups. All animal operations complied with the National Institute of Health (NIH) guidelines for the care and use of laboratory animals as approved by the Animal Ethical Committee, University of Jos. Group I was normal control and Group II was diabetic animals induced with alloxan. Insulin and extract doses of 200, 400, and 800 mg/kg were given to diabetic Groups III-VI. Normal animals in Groups VII-IX were given extract at doses of 200, 400, and 800 mg/kg for 28 days. Tissues were retrieved for biochemical and histological investigations using standard techniques. <b>Results:</b> There was decrease relative body weight of diabetic animals (95.50 ± 5.50) when compared to normal control (142.75 ± 20.08) with increased levels of urea (control 6.13 ± 0.523 and diabetes 29.23 ± 1.267) and creatinine (control 0.70 ± 0.057 and diabetes 2.13 ± 0.185). Histology of the liver and pancreas also points to organ damage due to hyperglycemia. However, oral administration of extract showed antidiabetic effect with protection of pancreatic beta cells and the induction of glycogen synthesis, no glycogen was deposited in the liver, addressing the secondary effects of diabetes, such as hepatic and renal toxicity. Further discovery revealed that extract elevated antioxidant enzyme expression. <b>Conclusion:</b> Leaf extract from <i>Moringa oleifera</i> reduces blood sugar and lessens the damage caused by hyperglycemia in the pancreas and liver.</p>","PeriodicalId":8826,"journal":{"name":"Biochemistry Research International","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypoglycemic Assessment of Aqueous Leaf Extract of <i>Moringa oleifera</i> on Diabetic Wistar Rats.\",\"authors\":\"Egbujo Ejike Amina, James O Adisa, Solomon Matthias Gamde, Etinosa Beauty Omoruyi, Habauka M Kwaambwa, Lamech M Mwapagha\",\"doi\":\"10.1155/2024/9779021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> <i>Moringa oleifera</i> leaf is used for diabetes due to its pharmacologic effects. Patients with hyperglycemia experience beta cell destruction. However, no research on risk awareness has been done to ascertain its safety. The present study describes the antidiabetic effect of <i>Moringa oleifera</i> leaf, such as the protection of pancreatic beta cells and the induction of glycogen synthesis, before addressing the secondary effects of diabetes, such as hepatic and renal toxicity. <b>Methods:</b> Forty-five Wistar rats weighed 160 ± 10 g were divided into nine groups. All animal operations complied with the National Institute of Health (NIH) guidelines for the care and use of laboratory animals as approved by the Animal Ethical Committee, University of Jos. Group I was normal control and Group II was diabetic animals induced with alloxan. Insulin and extract doses of 200, 400, and 800 mg/kg were given to diabetic Groups III-VI. Normal animals in Groups VII-IX were given extract at doses of 200, 400, and 800 mg/kg for 28 days. Tissues were retrieved for biochemical and histological investigations using standard techniques. <b>Results:</b> There was decrease relative body weight of diabetic animals (95.50 ± 5.50) when compared to normal control (142.75 ± 20.08) with increased levels of urea (control 6.13 ± 0.523 and diabetes 29.23 ± 1.267) and creatinine (control 0.70 ± 0.057 and diabetes 2.13 ± 0.185). Histology of the liver and pancreas also points to organ damage due to hyperglycemia. However, oral administration of extract showed antidiabetic effect with protection of pancreatic beta cells and the induction of glycogen synthesis, no glycogen was deposited in the liver, addressing the secondary effects of diabetes, such as hepatic and renal toxicity. Further discovery revealed that extract elevated antioxidant enzyme expression. <b>Conclusion:</b> Leaf extract from <i>Moringa oleifera</i> reduces blood sugar and lessens the damage caused by hyperglycemia in the pancreas and liver.</p>\",\"PeriodicalId\":8826,\"journal\":{\"name\":\"Biochemistry Research International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9779021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/9779021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Hypoglycemic Assessment of Aqueous Leaf Extract of Moringa oleifera on Diabetic Wistar Rats.
Background:Moringa oleifera leaf is used for diabetes due to its pharmacologic effects. Patients with hyperglycemia experience beta cell destruction. However, no research on risk awareness has been done to ascertain its safety. The present study describes the antidiabetic effect of Moringa oleifera leaf, such as the protection of pancreatic beta cells and the induction of glycogen synthesis, before addressing the secondary effects of diabetes, such as hepatic and renal toxicity. Methods: Forty-five Wistar rats weighed 160 ± 10 g were divided into nine groups. All animal operations complied with the National Institute of Health (NIH) guidelines for the care and use of laboratory animals as approved by the Animal Ethical Committee, University of Jos. Group I was normal control and Group II was diabetic animals induced with alloxan. Insulin and extract doses of 200, 400, and 800 mg/kg were given to diabetic Groups III-VI. Normal animals in Groups VII-IX were given extract at doses of 200, 400, and 800 mg/kg for 28 days. Tissues were retrieved for biochemical and histological investigations using standard techniques. Results: There was decrease relative body weight of diabetic animals (95.50 ± 5.50) when compared to normal control (142.75 ± 20.08) with increased levels of urea (control 6.13 ± 0.523 and diabetes 29.23 ± 1.267) and creatinine (control 0.70 ± 0.057 and diabetes 2.13 ± 0.185). Histology of the liver and pancreas also points to organ damage due to hyperglycemia. However, oral administration of extract showed antidiabetic effect with protection of pancreatic beta cells and the induction of glycogen synthesis, no glycogen was deposited in the liver, addressing the secondary effects of diabetes, such as hepatic and renal toxicity. Further discovery revealed that extract elevated antioxidant enzyme expression. Conclusion: Leaf extract from Moringa oleifera reduces blood sugar and lessens the damage caused by hyperglycemia in the pancreas and liver.