纵向倾斜功能数据建模。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae121
Mohammad Samsul Alam, Ana-Maria Staicu
{"title":"纵向倾斜功能数据建模。","authors":"Mohammad Samsul Alam, Ana-Maria Staicu","doi":"10.1093/biomtc/ujae121","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a model for longitudinal functional data analysis that accounts for pointwise skewness. The proposed procedure decouples the marginal pointwise variation from the complex longitudinal and functional dependence using copula methodology. Pointwise variation is described through parametric distribution functions that capture varying skewness and change smoothly both in time and over the functional argument. Joint dependence is quantified through a Gaussian copula with a low-rank approximation-based covariance. The introduced class of models provides a unifying platform for both pointwise quantile estimation and prediction of complete trajectories at new times. We investigate the methods numerically in simulations and discuss their application to a diffusion tensor imaging study of multiple sclerosis patients. This approach is implemented in the R package sLFDA that is publicly available on GitHub.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling longitudinal skewed functional data.\",\"authors\":\"Mohammad Samsul Alam, Ana-Maria Staicu\",\"doi\":\"10.1093/biomtc/ujae121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a model for longitudinal functional data analysis that accounts for pointwise skewness. The proposed procedure decouples the marginal pointwise variation from the complex longitudinal and functional dependence using copula methodology. Pointwise variation is described through parametric distribution functions that capture varying skewness and change smoothly both in time and over the functional argument. Joint dependence is quantified through a Gaussian copula with a low-rank approximation-based covariance. The introduced class of models provides a unifying platform for both pointwise quantile estimation and prediction of complete trajectories at new times. We investigate the methods numerically in simulations and discuss their application to a diffusion tensor imaging study of multiple sclerosis patients. This approach is implemented in the R package sLFDA that is publicly available on GitHub.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae121\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae121","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于纵向功能数据分析的模型,该模型考虑到了点偏度。所提出的程序利用 copula 方法将边际点状变化与复杂的纵向和函数依赖性分离开来。点向变异通过参数分布函数来描述,这些函数能捕捉不同的偏斜度,并在时间和功能参数上平滑变化。联合依赖性通过高斯协方差与基于低阶近似的协方差进行量化。引入的这一类模型提供了一个统一的平台,既能进行点量化估计,又能预测新时间的完整轨迹。我们在模拟中对这些方法进行了数值研究,并讨论了它们在多发性硬化症患者扩散张量成像研究中的应用。这种方法在 GitHub 上公开发布的 sLFDA R 软件包中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling longitudinal skewed functional data.

This paper introduces a model for longitudinal functional data analysis that accounts for pointwise skewness. The proposed procedure decouples the marginal pointwise variation from the complex longitudinal and functional dependence using copula methodology. Pointwise variation is described through parametric distribution functions that capture varying skewness and change smoothly both in time and over the functional argument. Joint dependence is quantified through a Gaussian copula with a low-rank approximation-based covariance. The introduced class of models provides a unifying platform for both pointwise quantile estimation and prediction of complete trajectories at new times. We investigate the methods numerically in simulations and discuss their application to a diffusion tensor imaging study of multiple sclerosis patients. This approach is implemented in the R package sLFDA that is publicly available on GitHub.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信