{"title":"Cathepsin K 阳性细胞系受神经感受性 Sonic Hedgehog 控制,促进原位牙本质形成。","authors":"Ruoshi Xu, Xiaohan Zhang, Weimin Lin, Yushun Wang, Danting Zhang, Shuang Jiang, Linfeng Liu, Jiaying Wang, Xutao Luo, Xiao Zhang, Junjun Jing, Quan Yuan, Chenchen Zhou","doi":"10.1002/advs.202310048","DOIUrl":null,"url":null,"abstract":"<p><p>Oral diseases affect nearly half of the global population throughout their lifetime causing pain, as estimated by the World Health Organization. Preservation of vital pulp is the therapeutic core as well as a challenge to protect natural teeth. Current bottleneck lies in that the regenerative capacity of injured pulp is undetermined. In this study, we identified a lifelong lineage that is labelled by cathepsin K (Ctsk) contributing to the physiological, reactionary and reparative odontogenesis of mouse molars. Ctsk<sup>+</sup> cell-mediated dentin formation is regulated by nociceptive nerve-derived Sonic Hedgehog (Shh), especially rapidly responsive to acute injury. Notably, exogenous Shh protein to the injury pulp can preserve Ctsk<sup>+</sup> cell capacity of odontogenesis for the nearby crown pulp and even remote root apex growth, alleviating conventionally developmental arrest in youth pulpitis. Exposed to chronical attrition, aged pulp Ctsk<sup>+</sup> cells still hold the capacity to respond to acute stimuli and promote reparative odontogenesis, also enhanced by exogenous Shh capping. Therefore, Ctsk<sup>+</sup> cells may be one of the lineages for accelerating precision medicine for efficient pulp treatment across ages. Shh application can be a candidate for vital pulp preservation and pulp injury repair by promoting regenerative odontogenesis to a certain extent from young adults to older individuals.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cathepsin K-Positive Cell Lineage Promotes In Situ Dentin Formation Controlled by Nociceptive Sonic Hedgehog.\",\"authors\":\"Ruoshi Xu, Xiaohan Zhang, Weimin Lin, Yushun Wang, Danting Zhang, Shuang Jiang, Linfeng Liu, Jiaying Wang, Xutao Luo, Xiao Zhang, Junjun Jing, Quan Yuan, Chenchen Zhou\",\"doi\":\"10.1002/advs.202310048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral diseases affect nearly half of the global population throughout their lifetime causing pain, as estimated by the World Health Organization. Preservation of vital pulp is the therapeutic core as well as a challenge to protect natural teeth. Current bottleneck lies in that the regenerative capacity of injured pulp is undetermined. In this study, we identified a lifelong lineage that is labelled by cathepsin K (Ctsk) contributing to the physiological, reactionary and reparative odontogenesis of mouse molars. Ctsk<sup>+</sup> cell-mediated dentin formation is regulated by nociceptive nerve-derived Sonic Hedgehog (Shh), especially rapidly responsive to acute injury. Notably, exogenous Shh protein to the injury pulp can preserve Ctsk<sup>+</sup> cell capacity of odontogenesis for the nearby crown pulp and even remote root apex growth, alleviating conventionally developmental arrest in youth pulpitis. Exposed to chronical attrition, aged pulp Ctsk<sup>+</sup> cells still hold the capacity to respond to acute stimuli and promote reparative odontogenesis, also enhanced by exogenous Shh capping. Therefore, Ctsk<sup>+</sup> cells may be one of the lineages for accelerating precision medicine for efficient pulp treatment across ages. Shh application can be a candidate for vital pulp preservation and pulp injury repair by promoting regenerative odontogenesis to a certain extent from young adults to older individuals.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202310048\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202310048","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cathepsin K-Positive Cell Lineage Promotes In Situ Dentin Formation Controlled by Nociceptive Sonic Hedgehog.
Oral diseases affect nearly half of the global population throughout their lifetime causing pain, as estimated by the World Health Organization. Preservation of vital pulp is the therapeutic core as well as a challenge to protect natural teeth. Current bottleneck lies in that the regenerative capacity of injured pulp is undetermined. In this study, we identified a lifelong lineage that is labelled by cathepsin K (Ctsk) contributing to the physiological, reactionary and reparative odontogenesis of mouse molars. Ctsk+ cell-mediated dentin formation is regulated by nociceptive nerve-derived Sonic Hedgehog (Shh), especially rapidly responsive to acute injury. Notably, exogenous Shh protein to the injury pulp can preserve Ctsk+ cell capacity of odontogenesis for the nearby crown pulp and even remote root apex growth, alleviating conventionally developmental arrest in youth pulpitis. Exposed to chronical attrition, aged pulp Ctsk+ cells still hold the capacity to respond to acute stimuli and promote reparative odontogenesis, also enhanced by exogenous Shh capping. Therefore, Ctsk+ cells may be one of the lineages for accelerating precision medicine for efficient pulp treatment across ages. Shh application can be a candidate for vital pulp preservation and pulp injury repair by promoting regenerative odontogenesis to a certain extent from young adults to older individuals.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.