{"title":"细胞的形状和方向控制着振荡精度。","authors":"Ifunanya Nwogbaga and Brian A. Camley","doi":"10.1039/D4SM00952E","DOIUrl":null,"url":null,"abstract":"<p >Eukaryotic cells sense and follow electric fields during wound healing and embryogenesis – this is called galvanotaxis. Galvanotaxis is believed to be driven by the redistribution of “sensors” – potentially transmembrane proteins or other molecules – through electrophoresis and electroosmosis. Here, we update our previous model of the limits of galvanotaxis due to the stochasticity of sensor movements to account for cell shape and orientation. Computing the Fisher information shows that, in principle, cells have more information about the electric field direction when their long axis is parallel to the field. However, for weak fields, maximum-likelihood estimators may have lower variability when the cell's long axis is perpendicular to the field. In an alternate possibility, we find that if cells instead estimate the field direction by taking the average of all the sensor locations as its directional cue (“vector sum”), this introduces a bias towards the short axis, an effect not present for isotropic cells. We also explore the possibility that cell elongation arises downstream of sensor redistribution. We argue that if sensors migrate to the cell's rear, the cell will tend to expand perpendicular the field – as is more commonly observed – but if sensors migrate to the front, the cell will tend to elongate parallel to the field.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 44","pages":" 8866-8887"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell shape and orientation control galvanotactic accuracy\",\"authors\":\"Ifunanya Nwogbaga and Brian A. Camley\",\"doi\":\"10.1039/D4SM00952E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Eukaryotic cells sense and follow electric fields during wound healing and embryogenesis – this is called galvanotaxis. Galvanotaxis is believed to be driven by the redistribution of “sensors” – potentially transmembrane proteins or other molecules – through electrophoresis and electroosmosis. Here, we update our previous model of the limits of galvanotaxis due to the stochasticity of sensor movements to account for cell shape and orientation. Computing the Fisher information shows that, in principle, cells have more information about the electric field direction when their long axis is parallel to the field. However, for weak fields, maximum-likelihood estimators may have lower variability when the cell's long axis is perpendicular to the field. In an alternate possibility, we find that if cells instead estimate the field direction by taking the average of all the sensor locations as its directional cue (“vector sum”), this introduces a bias towards the short axis, an effect not present for isotropic cells. We also explore the possibility that cell elongation arises downstream of sensor redistribution. We argue that if sensors migrate to the cell's rear, the cell will tend to expand perpendicular the field – as is more commonly observed – but if sensors migrate to the front, the cell will tend to elongate parallel to the field.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 44\",\"pages\":\" 8866-8887\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00952e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00952e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cell shape and orientation control galvanotactic accuracy
Eukaryotic cells sense and follow electric fields during wound healing and embryogenesis – this is called galvanotaxis. Galvanotaxis is believed to be driven by the redistribution of “sensors” – potentially transmembrane proteins or other molecules – through electrophoresis and electroosmosis. Here, we update our previous model of the limits of galvanotaxis due to the stochasticity of sensor movements to account for cell shape and orientation. Computing the Fisher information shows that, in principle, cells have more information about the electric field direction when their long axis is parallel to the field. However, for weak fields, maximum-likelihood estimators may have lower variability when the cell's long axis is perpendicular to the field. In an alternate possibility, we find that if cells instead estimate the field direction by taking the average of all the sensor locations as its directional cue (“vector sum”), this introduces a bias towards the short axis, an effect not present for isotropic cells. We also explore the possibility that cell elongation arises downstream of sensor redistribution. We argue that if sensors migrate to the cell's rear, the cell will tend to expand perpendicular the field – as is more commonly observed – but if sensors migrate to the front, the cell will tend to elongate parallel to the field.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.