Gulzhan Zhumadil, Menghua Cao, Yu Han, Vladimir Pavlenko, Gaukhar Nigmetova, Zhuldyz Yelzhanova, Hryhorii P Parkhomenko, Zhazira Ergasheva, Damir Aidarkhanov, Mannix P Balanay, Askhat N Jumabekov, Gang Li, Zhiwei Ren, Annie Ng
{"title":"离子液体辅助的无机铯基包晶石薄膜形态工程策略,以实现高性能太阳能电池。","authors":"Gulzhan Zhumadil, Menghua Cao, Yu Han, Vladimir Pavlenko, Gaukhar Nigmetova, Zhuldyz Yelzhanova, Hryhorii P Parkhomenko, Zhazira Ergasheva, Damir Aidarkhanov, Mannix P Balanay, Askhat N Jumabekov, Gang Li, Zhiwei Ren, Annie Ng","doi":"10.1021/acsami.4c15880","DOIUrl":null,"url":null,"abstract":"<p><p>The wide bandgap CsPbI<sub>2</sub>Br perovskite materials have attracted significant attention due to their high thermal stability and compatibility with narrow bandgap materials in tandem devices. The performance of perovskite solar cells (PSCs) is highly dependent on the quality of the perovskite layer, which is governed by the crystallization process during solution processing. However, the crystallization dynamics of CsPbI<sub>2</sub>Br thin films remain less explored compared to conventional organic-inorganic perovskites. Achieving high-quality CsPbI<sub>2</sub>Br films with uniform morphology and large perovskite grains remains challenging with standard solution techniques. This study applies the ionic liquid (IL) [EMIM]<sup>+</sup>[PF<sub>6</sub>]<sup>-</sup> as an additive within the bulk CsPbI<sub>2</sub>Br absorber layer. Within our experimental regime, [EMIM]<sup>+</sup>[PF<sub>6</sub>]<sup>-</sup> accelerates the crystallization process while promoting the formation of large perovskite grains, a feature not commonly observed in previous studies. Our experimental results suggest that the IL acts as heterogeneous nucleation sites, and varying IL incorporation amount significantly impacts the morphology of CsPbI<sub>2</sub>Br perovskite films. Consistent UV-vis and photoluminescence (PL) red-shifts are observed in the IL-incorporated CsPbI<sub>2</sub>Br films, with X-ray diffraction (XRD) data projecting an influence on the perovskite crystal structure. These findings provide new insights into the role of ILs in controlling crystallization and morphology that have been minimally discussed in the literature. The incorporation of an optimized amount of [EMIM]<sup>+</sup>[PF<sub>6</sub>]<sup>-</sup> promotes the formation of highly crystalline perovskite thin films with excellent morphology, reducing defect density, enhancing carrier transport, and yielding large grain sizes. As a result, PSCs fabricated with [EMIM]<sup>+</sup>[PF<sub>6</sub>]<sup>-</sup> achieved a power conversion efficiency (PCE) of 17.11% (stabilized at 15.87%) and an open-circuit voltage (<i>V</i><sub>OC</sub>) of 1.39 V, along with improved stability compared to control devices. This work provides a straightforward approach for producing high-quality CsPbI<sub>2</sub>Br thin films with high reproducibility, contributing valuable advancements to Cs-based PSCs.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Liquid-Assisted Strategy for Morphology Engineering of Inorganic Cesium-Based Perovskite Thin Films Toward High-Performance Solar Cells.\",\"authors\":\"Gulzhan Zhumadil, Menghua Cao, Yu Han, Vladimir Pavlenko, Gaukhar Nigmetova, Zhuldyz Yelzhanova, Hryhorii P Parkhomenko, Zhazira Ergasheva, Damir Aidarkhanov, Mannix P Balanay, Askhat N Jumabekov, Gang Li, Zhiwei Ren, Annie Ng\",\"doi\":\"10.1021/acsami.4c15880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The wide bandgap CsPbI<sub>2</sub>Br perovskite materials have attracted significant attention due to their high thermal stability and compatibility with narrow bandgap materials in tandem devices. The performance of perovskite solar cells (PSCs) is highly dependent on the quality of the perovskite layer, which is governed by the crystallization process during solution processing. However, the crystallization dynamics of CsPbI<sub>2</sub>Br thin films remain less explored compared to conventional organic-inorganic perovskites. Achieving high-quality CsPbI<sub>2</sub>Br films with uniform morphology and large perovskite grains remains challenging with standard solution techniques. This study applies the ionic liquid (IL) [EMIM]<sup>+</sup>[PF<sub>6</sub>]<sup>-</sup> as an additive within the bulk CsPbI<sub>2</sub>Br absorber layer. Within our experimental regime, [EMIM]<sup>+</sup>[PF<sub>6</sub>]<sup>-</sup> accelerates the crystallization process while promoting the formation of large perovskite grains, a feature not commonly observed in previous studies. Our experimental results suggest that the IL acts as heterogeneous nucleation sites, and varying IL incorporation amount significantly impacts the morphology of CsPbI<sub>2</sub>Br perovskite films. Consistent UV-vis and photoluminescence (PL) red-shifts are observed in the IL-incorporated CsPbI<sub>2</sub>Br films, with X-ray diffraction (XRD) data projecting an influence on the perovskite crystal structure. These findings provide new insights into the role of ILs in controlling crystallization and morphology that have been minimally discussed in the literature. The incorporation of an optimized amount of [EMIM]<sup>+</sup>[PF<sub>6</sub>]<sup>-</sup> promotes the formation of highly crystalline perovskite thin films with excellent morphology, reducing defect density, enhancing carrier transport, and yielding large grain sizes. As a result, PSCs fabricated with [EMIM]<sup>+</sup>[PF<sub>6</sub>]<sup>-</sup> achieved a power conversion efficiency (PCE) of 17.11% (stabilized at 15.87%) and an open-circuit voltage (<i>V</i><sub>OC</sub>) of 1.39 V, along with improved stability compared to control devices. This work provides a straightforward approach for producing high-quality CsPbI<sub>2</sub>Br thin films with high reproducibility, contributing valuable advancements to Cs-based PSCs.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c15880\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15880","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
宽带隙 CsPbI2Br 包晶石材料因其高热稳定性以及在串联器件中与窄带隙材料的兼容性而备受关注。包晶体太阳能电池(PSC)的性能在很大程度上取决于包晶体层的质量,而包晶体层的质量又受溶液处理过程中结晶过程的影响。然而,与传统的有机-无机包晶体相比,对 CsPbI2Br 薄膜结晶动力学的探索仍然较少。利用标准溶液技术实现具有均匀形态和大包晶粒的高质量 CsPbI2Br 薄膜仍然具有挑战性。本研究采用离子液体(IL)[EMIM]+[PF6]- 作为块状 CsPbI2Br 吸收层的添加剂。在我们的实验体系中,[EMIM]+[PF6]- 加快了结晶过程,同时促进了大的包晶晶粒的形成,这在以往的研究中并不常见。我们的实验结果表明,IL 起着异质成核位点的作用,不同的 IL 加入量会显著影响 CsPbI2Br 包晶体薄膜的形态。在 IL 掺杂的 CsPbI2Br 薄膜中观察到了一致的紫外可见光和光致发光(PL)红移,X 射线衍射(XRD)数据预测了对包晶晶体结构的影响。这些发现为了解 IL 在控制结晶和形态方面的作用提供了新的视角,而这些问题在文献中讨论得很少。加入优化量的[EMIM]+[PF6]-可促进形成具有优异形貌的高结晶度透辉石薄膜,降低缺陷密度,增强载流子传输,并产生大尺寸晶粒。因此,与对照器件相比,用[EMIM]+[PF6]- 制造的 PSC 实现了 17.11% 的功率转换效率(PCE)(稳定在 15.87%)和 1.39 V 的开路电压(VOC),并提高了稳定性。这项研究为生产具有高重现性的高质量 CsPbI2Br 薄膜提供了一种直接的方法,为铯基 PSC 的发展做出了宝贵的贡献。
Ionic Liquid-Assisted Strategy for Morphology Engineering of Inorganic Cesium-Based Perovskite Thin Films Toward High-Performance Solar Cells.
The wide bandgap CsPbI2Br perovskite materials have attracted significant attention due to their high thermal stability and compatibility with narrow bandgap materials in tandem devices. The performance of perovskite solar cells (PSCs) is highly dependent on the quality of the perovskite layer, which is governed by the crystallization process during solution processing. However, the crystallization dynamics of CsPbI2Br thin films remain less explored compared to conventional organic-inorganic perovskites. Achieving high-quality CsPbI2Br films with uniform morphology and large perovskite grains remains challenging with standard solution techniques. This study applies the ionic liquid (IL) [EMIM]+[PF6]- as an additive within the bulk CsPbI2Br absorber layer. Within our experimental regime, [EMIM]+[PF6]- accelerates the crystallization process while promoting the formation of large perovskite grains, a feature not commonly observed in previous studies. Our experimental results suggest that the IL acts as heterogeneous nucleation sites, and varying IL incorporation amount significantly impacts the morphology of CsPbI2Br perovskite films. Consistent UV-vis and photoluminescence (PL) red-shifts are observed in the IL-incorporated CsPbI2Br films, with X-ray diffraction (XRD) data projecting an influence on the perovskite crystal structure. These findings provide new insights into the role of ILs in controlling crystallization and morphology that have been minimally discussed in the literature. The incorporation of an optimized amount of [EMIM]+[PF6]- promotes the formation of highly crystalline perovskite thin films with excellent morphology, reducing defect density, enhancing carrier transport, and yielding large grain sizes. As a result, PSCs fabricated with [EMIM]+[PF6]- achieved a power conversion efficiency (PCE) of 17.11% (stabilized at 15.87%) and an open-circuit voltage (VOC) of 1.39 V, along with improved stability compared to control devices. This work provides a straightforward approach for producing high-quality CsPbI2Br thin films with high reproducibility, contributing valuable advancements to Cs-based PSCs.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture