Yingying Cai, Swagato Sarkar, Yuwen Peng, Tobias A F König, Philipp Vana
{"title":"超声波控制聚合物包裹的质子分子","authors":"Yingying Cai, Swagato Sarkar, Yuwen Peng, Tobias A F König, Philipp Vana","doi":"10.1021/acsnano.4c10912","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different AB<sub><i>N</i></sub>-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs' nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"31360-31371"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic Control of Polymer-Capped Plasmonic Molecules.\",\"authors\":\"Yingying Cai, Swagato Sarkar, Yuwen Peng, Tobias A F König, Philipp Vana\",\"doi\":\"10.1021/acsnano.4c10912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different AB<sub><i>N</i></sub>-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs' nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"31360-31371\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c10912\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10912","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrasonic Control of Polymer-Capped Plasmonic Molecules.
Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different ABN-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs' nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.