Venkata N K B Adusumalli, Hyeon Jung Yu, Yeongchang Goh, Sang Hwan Nam, Yong Il Park
{"title":"利用掺入离子的 Ln3+ 核-肽-壳单纳米晶体为高级安全应用提供三重模式保护。","authors":"Venkata N K B Adusumalli, Hyeon Jung Yu, Yeongchang Goh, Sang Hwan Nam, Yong Il Park","doi":"10.1021/acsami.4c11798","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, oleic acid (OA)-capped core-heptad-shell (CHS) nanocrystals (NCs) that exhibit multiple emissions achieved through downshifting and orthogonal upconversion are synthesized via layer-by-layer thermal decomposition. This method enables the downshifting process to be accommodated by doping ions in the inert space between two upconversion patterns (the core and fourth shell) and doping Ce/Tb or Ce/Eu ions in the NaGdF<sub>4</sub> layer for the first time. These developed CHS NCs exhibit different emission colors via 980 and 800 nm orthogonal upconversion and downshifting emissions under 256 nm UV excitation in hexane solvent. Furthermore, surface-functionalized OA is removed using mild acid treatment. The resulting bare CHS NCs disperse well in water and exhibit 21.60-fold and 43.59-fold higher Ce/Tb and Ce/Eu luminescence intensities, respectively, than the OA-capped CHS NCs. These NCs are mixed with a carboxymethylcellulose (CMC) polymer in an aqueous medium to form a CMC-CHS NC gel. Invisible patterns and QR codes are printed on nonfluorescent paper using gels and screen-printing techniques. These patterns and QR codes exhibit three different emission colors under three different excitations. This method can be used for high-level anticounterfeiting applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple-Mode Protection with Ln<sup>3+</sup> Ion-Doped Core-Heptad-Shell Single Nanocrystals for High-Level Security Applications.\",\"authors\":\"Venkata N K B Adusumalli, Hyeon Jung Yu, Yeongchang Goh, Sang Hwan Nam, Yong Il Park\",\"doi\":\"10.1021/acsami.4c11798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, oleic acid (OA)-capped core-heptad-shell (CHS) nanocrystals (NCs) that exhibit multiple emissions achieved through downshifting and orthogonal upconversion are synthesized via layer-by-layer thermal decomposition. This method enables the downshifting process to be accommodated by doping ions in the inert space between two upconversion patterns (the core and fourth shell) and doping Ce/Tb or Ce/Eu ions in the NaGdF<sub>4</sub> layer for the first time. These developed CHS NCs exhibit different emission colors via 980 and 800 nm orthogonal upconversion and downshifting emissions under 256 nm UV excitation in hexane solvent. Furthermore, surface-functionalized OA is removed using mild acid treatment. The resulting bare CHS NCs disperse well in water and exhibit 21.60-fold and 43.59-fold higher Ce/Tb and Ce/Eu luminescence intensities, respectively, than the OA-capped CHS NCs. These NCs are mixed with a carboxymethylcellulose (CMC) polymer in an aqueous medium to form a CMC-CHS NC gel. Invisible patterns and QR codes are printed on nonfluorescent paper using gels and screen-printing techniques. These patterns and QR codes exhibit three different emission colors under three different excitations. This method can be used for high-level anticounterfeiting applications.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c11798\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11798","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Triple-Mode Protection with Ln3+ Ion-Doped Core-Heptad-Shell Single Nanocrystals for High-Level Security Applications.
In this work, oleic acid (OA)-capped core-heptad-shell (CHS) nanocrystals (NCs) that exhibit multiple emissions achieved through downshifting and orthogonal upconversion are synthesized via layer-by-layer thermal decomposition. This method enables the downshifting process to be accommodated by doping ions in the inert space between two upconversion patterns (the core and fourth shell) and doping Ce/Tb or Ce/Eu ions in the NaGdF4 layer for the first time. These developed CHS NCs exhibit different emission colors via 980 and 800 nm orthogonal upconversion and downshifting emissions under 256 nm UV excitation in hexane solvent. Furthermore, surface-functionalized OA is removed using mild acid treatment. The resulting bare CHS NCs disperse well in water and exhibit 21.60-fold and 43.59-fold higher Ce/Tb and Ce/Eu luminescence intensities, respectively, than the OA-capped CHS NCs. These NCs are mixed with a carboxymethylcellulose (CMC) polymer in an aqueous medium to form a CMC-CHS NC gel. Invisible patterns and QR codes are printed on nonfluorescent paper using gels and screen-printing techniques. These patterns and QR codes exhibit three different emission colors under three different excitations. This method can be used for high-level anticounterfeiting applications.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture