泡沫铜基 CoMnOx@Co3O4/CF 催化剂的合成与优化:实现对二甲苯的高效催化氧化。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-11-13 Epub Date: 2024-10-31 DOI:10.1021/acsami.4c11647
Youxiao Xu, Guangfei Qu, Huanhuan Wu, Chenyang Zhao, Rui Xu, Ping Ning, Junyan Li
{"title":"泡沫铜基 CoMnOx@Co3O4/CF 催化剂的合成与优化:实现对二甲苯的高效催化氧化。","authors":"Youxiao Xu, Guangfei Qu, Huanhuan Wu, Chenyang Zhao, Rui Xu, Ping Ning, Junyan Li","doi":"10.1021/acsami.4c11647","DOIUrl":null,"url":null,"abstract":"<p><p>This study successfully developed a foam copper (CF)-based CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF composite catalyst, achieving efficient thermal catalytic oxidation of paraxylene through multifactor optimization of synthesis conditions. At a Co:Mn molar ratio of 2:1 and a calcination temperature of 450 °C, the catalyst exhibited outstanding catalytic performance, with a <i>T</i><sub>90</sub> temperature as low as 246 °C, significantly lower than that of catalysts synthesized under other conditions. Additionally, BET, XPS, Raman, EPR, and H<sub>2</sub>-TPR test results indicate that the catalyst possesses a high specific surface area, abundant oxygen vacancies, a distribution of multivalent Co and Mn species, and a lower hydrogen reduction temperature, all of which contribute to the high catalytic activity of CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF. Furthermore, <i>in situ</i> DRIFTS confirmed that the oxidation of paraxylene on CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF follows the Mars-Van Krevelen (MvK) mechanism. The proposed reaction pathway begins with the oxidation of the methyl group on paraxylene, followed by the opening of the benzene ring and further oxidation to CO<sub>2</sub> and H<sub>2</sub>O. The innovative structural design and excellent catalytic performance of this catalyst provide new insights and solutions for the industrial treatment of VOCs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Optimization of Foam Copper-Based CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF Catalyst: Achieving Efficient Catalytic Oxidation of Paraxylene.\",\"authors\":\"Youxiao Xu, Guangfei Qu, Huanhuan Wu, Chenyang Zhao, Rui Xu, Ping Ning, Junyan Li\",\"doi\":\"10.1021/acsami.4c11647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study successfully developed a foam copper (CF)-based CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF composite catalyst, achieving efficient thermal catalytic oxidation of paraxylene through multifactor optimization of synthesis conditions. At a Co:Mn molar ratio of 2:1 and a calcination temperature of 450 °C, the catalyst exhibited outstanding catalytic performance, with a <i>T</i><sub>90</sub> temperature as low as 246 °C, significantly lower than that of catalysts synthesized under other conditions. Additionally, BET, XPS, Raman, EPR, and H<sub>2</sub>-TPR test results indicate that the catalyst possesses a high specific surface area, abundant oxygen vacancies, a distribution of multivalent Co and Mn species, and a lower hydrogen reduction temperature, all of which contribute to the high catalytic activity of CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF. Furthermore, <i>in situ</i> DRIFTS confirmed that the oxidation of paraxylene on CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF follows the Mars-Van Krevelen (MvK) mechanism. The proposed reaction pathway begins with the oxidation of the methyl group on paraxylene, followed by the opening of the benzene ring and further oxidation to CO<sub>2</sub> and H<sub>2</sub>O. The innovative structural design and excellent catalytic performance of this catalyst provide new insights and solutions for the industrial treatment of VOCs.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c11647\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11647","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过多因素优化合成条件,成功开发了一种泡沫铜(CF)基 CoMnOx@Co3O4/CF 复合催化剂,实现了对二甲苯的高效热催化氧化。在 Co:Mn 摩尔比为 2:1、煅烧温度为 450 ℃ 的条件下,该催化剂表现出优异的催化性能,T90 温度低至 246 ℃,明显低于其他条件下合成的催化剂。此外,BET、XPS、拉曼、EPR 和 H2-TPR 测试结果表明,该催化剂具有较高的比表面积、丰富的氧空位、多价 Co 和 Mn 物种分布以及较低的氢还原温度,所有这些都有助于提高 CoMnOx@Co3O4/CF 的催化活性。此外,原位 DRIFTS 证实 CoMnOx@Co3O4/CF 上对二甲苯的氧化遵循 Mars-Van Krevelen(MvK)机理。所提出的反应途径首先是对二甲苯上的甲基被氧化,然后苯环打开并进一步氧化成 CO2 和 H2O。该催化剂创新的结构设计和优异的催化性能为工业处理挥发性有机化合物提供了新的思路和解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis and Optimization of Foam Copper-Based CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF Catalyst: Achieving Efficient Catalytic Oxidation of Paraxylene.

Synthesis and Optimization of Foam Copper-Based CoMnOx@Co3O4/CF Catalyst: Achieving Efficient Catalytic Oxidation of Paraxylene.

This study successfully developed a foam copper (CF)-based CoMnOx@Co3O4/CF composite catalyst, achieving efficient thermal catalytic oxidation of paraxylene through multifactor optimization of synthesis conditions. At a Co:Mn molar ratio of 2:1 and a calcination temperature of 450 °C, the catalyst exhibited outstanding catalytic performance, with a T90 temperature as low as 246 °C, significantly lower than that of catalysts synthesized under other conditions. Additionally, BET, XPS, Raman, EPR, and H2-TPR test results indicate that the catalyst possesses a high specific surface area, abundant oxygen vacancies, a distribution of multivalent Co and Mn species, and a lower hydrogen reduction temperature, all of which contribute to the high catalytic activity of CoMnOx@Co3O4/CF. Furthermore, in situ DRIFTS confirmed that the oxidation of paraxylene on CoMnOx@Co3O4/CF follows the Mars-Van Krevelen (MvK) mechanism. The proposed reaction pathway begins with the oxidation of the methyl group on paraxylene, followed by the opening of the benzene ring and further oxidation to CO2 and H2O. The innovative structural design and excellent catalytic performance of this catalyst provide new insights and solutions for the industrial treatment of VOCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信