{"title":"构建锶纳米粒子装饰三维支架的一步式气体发泡策略:修复严重骨缺损的新平台","authors":"Yujie Chen, Yucai Li, Xinyi Wang, Xiumei Mo, Yicheng Chen, Zijun Deng, Xiaojian Ye, Jiangming Yu","doi":"10.1021/acsami.4c13119","DOIUrl":null,"url":null,"abstract":"<p><p>The management of critical-sized bone defects poses significant clinical challenges, particularly in the battlefield and trauma-related injuries. However, bone tissue engineering scaffolds that satisfy high porosity and good angiogenic and osteogenic functions are scarce. In this study, 3D nanofiber scaffolds decorated with strontium nanoparticles (3DS-Sr) were fabricated by combining electrospinning and gas foaming. Sodium borohydride (NaBH<sub>4</sub>) served a dual role as both a reducing and gas-foaming agent, enabling a one-step process for expansion and modification. <i>In vitro</i> experimental results demonstrated that 3DS-Sr possessed an integrated multilayered porous structure. It promoted angiogenesis by upregulating the expression of hypoxia-inducible factor-1α (HIF-1α) protein and phosphorylation of ERK through the sustained release of Sr<sup>2+</sup> and created a favorable microenvironment for osteogenesis by activating the Wnt/β-catenin pathway. <i>In vivo</i> experiments indicated that 3DS-Sr promoted cranial bone regeneration by synergistically promoting the effects of vascularization and osteogenesis. In summary, this study proposed a bioactive bone scaffold in a \"one stone, two birds\" manner, providing a promising strategy for bone defect repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Step Gas Foaming Strategy for Constructing Strontium Nanoparticle Decorated 3D Scaffolds: a New Platform for Repairing Critical Bone Defects.\",\"authors\":\"Yujie Chen, Yucai Li, Xinyi Wang, Xiumei Mo, Yicheng Chen, Zijun Deng, Xiaojian Ye, Jiangming Yu\",\"doi\":\"10.1021/acsami.4c13119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The management of critical-sized bone defects poses significant clinical challenges, particularly in the battlefield and trauma-related injuries. However, bone tissue engineering scaffolds that satisfy high porosity and good angiogenic and osteogenic functions are scarce. In this study, 3D nanofiber scaffolds decorated with strontium nanoparticles (3DS-Sr) were fabricated by combining electrospinning and gas foaming. Sodium borohydride (NaBH<sub>4</sub>) served a dual role as both a reducing and gas-foaming agent, enabling a one-step process for expansion and modification. <i>In vitro</i> experimental results demonstrated that 3DS-Sr possessed an integrated multilayered porous structure. It promoted angiogenesis by upregulating the expression of hypoxia-inducible factor-1α (HIF-1α) protein and phosphorylation of ERK through the sustained release of Sr<sup>2+</sup> and created a favorable microenvironment for osteogenesis by activating the Wnt/β-catenin pathway. <i>In vivo</i> experiments indicated that 3DS-Sr promoted cranial bone regeneration by synergistically promoting the effects of vascularization and osteogenesis. In summary, this study proposed a bioactive bone scaffold in a \\\"one stone, two birds\\\" manner, providing a promising strategy for bone defect repair.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c13119\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13119","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
One-Step Gas Foaming Strategy for Constructing Strontium Nanoparticle Decorated 3D Scaffolds: a New Platform for Repairing Critical Bone Defects.
The management of critical-sized bone defects poses significant clinical challenges, particularly in the battlefield and trauma-related injuries. However, bone tissue engineering scaffolds that satisfy high porosity and good angiogenic and osteogenic functions are scarce. In this study, 3D nanofiber scaffolds decorated with strontium nanoparticles (3DS-Sr) were fabricated by combining electrospinning and gas foaming. Sodium borohydride (NaBH4) served a dual role as both a reducing and gas-foaming agent, enabling a one-step process for expansion and modification. In vitro experimental results demonstrated that 3DS-Sr possessed an integrated multilayered porous structure. It promoted angiogenesis by upregulating the expression of hypoxia-inducible factor-1α (HIF-1α) protein and phosphorylation of ERK through the sustained release of Sr2+ and created a favorable microenvironment for osteogenesis by activating the Wnt/β-catenin pathway. In vivo experiments indicated that 3DS-Sr promoted cranial bone regeneration by synergistically promoting the effects of vascularization and osteogenesis. In summary, this study proposed a bioactive bone scaffold in a "one stone, two birds" manner, providing a promising strategy for bone defect repair.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture