Xinling Cui, Xiaoguang Meng, Zhishang Hu, Peize Wu, Huan Yao, Ming Li, Ling Lin
{"title":"通过逐步还原和差异化烷基化分析天冬胰岛素的多二硫桥。","authors":"Xinling Cui, Xiaoguang Meng, Zhishang Hu, Peize Wu, Huan Yao, Ming Li, Ling Lin","doi":"10.1007/s00216-024-05597-y","DOIUrl":null,"url":null,"abstract":"<p><p>Disulfide bridge, an important post-translation modification in protein, plays a key role in stabilizing three-dimensional structure of proteins, maintaining correct folded conformation, and thus regulating the biological activities. Disulfide bridge assignment is essential to understand the essence of life process and to develop protein pharmaceutical. In this study, a novel method termed as stepwise reduction and differentiated alkylation (SRDA) was developed analyzing disulfide connectivity for proteins. As a demonstration, three disulfide bridges in insulin aspart were successfully characterized using this SRDA method combined with LC-HRMS<sup>n</sup>. Firstly, tris (2-carboxyethyl) phosphine (TCEP) was used to partially reduce disulfide bridges with N-ethylmaleimide (NEM) used to block the generated free thiol. Then, dithiothreitol (DTT) was used to reduce the rest disulfide bonds with iodoacetamide (IAM) used to block the newly generated free thiol. After that, an LC-HRMS<sup>n</sup> method was established to assign disulfide connectivity for an insulin aspart study material, based on the different mass shifts arising from differentiated alkylation. Moreover, this approach allows for the quantitative analysis of various disulfide bond pairings, which can be applied to studies on the consistency and stability among different batches of samples. The results show that SRDA is a valuable tool for reliable quality control and quality assessment of disulfide-rich proteins such as insulin analogues.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6725-6733"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of multi-disulfide bridges for insulin aspart by stepwise reduction and differentiated alkylation.\",\"authors\":\"Xinling Cui, Xiaoguang Meng, Zhishang Hu, Peize Wu, Huan Yao, Ming Li, Ling Lin\",\"doi\":\"10.1007/s00216-024-05597-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disulfide bridge, an important post-translation modification in protein, plays a key role in stabilizing three-dimensional structure of proteins, maintaining correct folded conformation, and thus regulating the biological activities. Disulfide bridge assignment is essential to understand the essence of life process and to develop protein pharmaceutical. In this study, a novel method termed as stepwise reduction and differentiated alkylation (SRDA) was developed analyzing disulfide connectivity for proteins. As a demonstration, three disulfide bridges in insulin aspart were successfully characterized using this SRDA method combined with LC-HRMS<sup>n</sup>. Firstly, tris (2-carboxyethyl) phosphine (TCEP) was used to partially reduce disulfide bridges with N-ethylmaleimide (NEM) used to block the generated free thiol. Then, dithiothreitol (DTT) was used to reduce the rest disulfide bonds with iodoacetamide (IAM) used to block the newly generated free thiol. After that, an LC-HRMS<sup>n</sup> method was established to assign disulfide connectivity for an insulin aspart study material, based on the different mass shifts arising from differentiated alkylation. Moreover, this approach allows for the quantitative analysis of various disulfide bond pairings, which can be applied to studies on the consistency and stability among different batches of samples. The results show that SRDA is a valuable tool for reliable quality control and quality assessment of disulfide-rich proteins such as insulin analogues.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"6725-6733\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-024-05597-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05597-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Analysis of multi-disulfide bridges for insulin aspart by stepwise reduction and differentiated alkylation.
Disulfide bridge, an important post-translation modification in protein, plays a key role in stabilizing three-dimensional structure of proteins, maintaining correct folded conformation, and thus regulating the biological activities. Disulfide bridge assignment is essential to understand the essence of life process and to develop protein pharmaceutical. In this study, a novel method termed as stepwise reduction and differentiated alkylation (SRDA) was developed analyzing disulfide connectivity for proteins. As a demonstration, three disulfide bridges in insulin aspart were successfully characterized using this SRDA method combined with LC-HRMSn. Firstly, tris (2-carboxyethyl) phosphine (TCEP) was used to partially reduce disulfide bridges with N-ethylmaleimide (NEM) used to block the generated free thiol. Then, dithiothreitol (DTT) was used to reduce the rest disulfide bonds with iodoacetamide (IAM) used to block the newly generated free thiol. After that, an LC-HRMSn method was established to assign disulfide connectivity for an insulin aspart study material, based on the different mass shifts arising from differentiated alkylation. Moreover, this approach allows for the quantitative analysis of various disulfide bond pairings, which can be applied to studies on the consistency and stability among different batches of samples. The results show that SRDA is a valuable tool for reliable quality control and quality assessment of disulfide-rich proteins such as insulin analogues.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.