Zhihuan Li, Lejie Tian, Wei Wu, Li Feng, Bakyt Khaniyev, Yerzhan Mukhametkarimov, Margulan Ibraimov, Feng Zhou, Weimin Liu, Jianxi Liu
{"title":"采用异质结构电介质的比色法布里-佩罗传感器用于湿度监测","authors":"Zhihuan Li, Lejie Tian, Wei Wu, Li Feng, Bakyt Khaniyev, Yerzhan Mukhametkarimov, Margulan Ibraimov, Feng Zhou, Weimin Liu, Jianxi Liu","doi":"10.1002/smtd.202401485","DOIUrl":null,"url":null,"abstract":"<p><p>A full-color colorimetric humidity sensor with high brightness is proposed by using a hetero-structured dielectric film in a metal-insulator-metal (MIM) resonator. A humidity-responsive polymer is designed to graft on top of a metal-organic frameworks (MOFs) thin film (MOFs-Polymer) as insulator layer in the resonator. Programmable tuning of reflected color is achieved by controlling the polymer thicknesses, and finite difference time domain simulation of light-matter interactions at subwavelength scales proves the dependence of the reflected wavelength on dielectric layer thickness of the resonator. Vivid full-color changing is realized during tracking humidity process due to swelling of the stimuli-responsive polymer. Ultrafast response (≈0.75 s) is achieved for tracking trace H<sub>2</sub>O from H<sub>2</sub>O/methanol mixture, which is ≈10<sup>4</sup> faster than that of the pure polymer-based MIM resonator. Meanwhile, the study observes significant spectral redshift because the porous MOFs film facilitates the preconcentration of external stimulus and improves the detection sensitivity of the resonator. Further, double-channel anti-counterfeiting multiplexing imaging is devised on the MIM resonator by photomask technology. Patterned encoding for security label is achieved on the MIM resonator by engineering humidity-tunable pixels of Au/MOFs-Polymer/Au and humidity-invalid pixels of Au/MOFs/Au.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401485"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colorimetric Fabry-Pérot Sensor with Hetero-Structured Dielectric for Humidity Monitoring.\",\"authors\":\"Zhihuan Li, Lejie Tian, Wei Wu, Li Feng, Bakyt Khaniyev, Yerzhan Mukhametkarimov, Margulan Ibraimov, Feng Zhou, Weimin Liu, Jianxi Liu\",\"doi\":\"10.1002/smtd.202401485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A full-color colorimetric humidity sensor with high brightness is proposed by using a hetero-structured dielectric film in a metal-insulator-metal (MIM) resonator. A humidity-responsive polymer is designed to graft on top of a metal-organic frameworks (MOFs) thin film (MOFs-Polymer) as insulator layer in the resonator. Programmable tuning of reflected color is achieved by controlling the polymer thicknesses, and finite difference time domain simulation of light-matter interactions at subwavelength scales proves the dependence of the reflected wavelength on dielectric layer thickness of the resonator. Vivid full-color changing is realized during tracking humidity process due to swelling of the stimuli-responsive polymer. Ultrafast response (≈0.75 s) is achieved for tracking trace H<sub>2</sub>O from H<sub>2</sub>O/methanol mixture, which is ≈10<sup>4</sup> faster than that of the pure polymer-based MIM resonator. Meanwhile, the study observes significant spectral redshift because the porous MOFs film facilitates the preconcentration of external stimulus and improves the detection sensitivity of the resonator. Further, double-channel anti-counterfeiting multiplexing imaging is devised on the MIM resonator by photomask technology. Patterned encoding for security label is achieved on the MIM resonator by engineering humidity-tunable pixels of Au/MOFs-Polymer/Au and humidity-invalid pixels of Au/MOFs/Au.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401485\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401485\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401485","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Colorimetric Fabry-Pérot Sensor with Hetero-Structured Dielectric for Humidity Monitoring.
A full-color colorimetric humidity sensor with high brightness is proposed by using a hetero-structured dielectric film in a metal-insulator-metal (MIM) resonator. A humidity-responsive polymer is designed to graft on top of a metal-organic frameworks (MOFs) thin film (MOFs-Polymer) as insulator layer in the resonator. Programmable tuning of reflected color is achieved by controlling the polymer thicknesses, and finite difference time domain simulation of light-matter interactions at subwavelength scales proves the dependence of the reflected wavelength on dielectric layer thickness of the resonator. Vivid full-color changing is realized during tracking humidity process due to swelling of the stimuli-responsive polymer. Ultrafast response (≈0.75 s) is achieved for tracking trace H2O from H2O/methanol mixture, which is ≈104 faster than that of the pure polymer-based MIM resonator. Meanwhile, the study observes significant spectral redshift because the porous MOFs film facilitates the preconcentration of external stimulus and improves the detection sensitivity of the resonator. Further, double-channel anti-counterfeiting multiplexing imaging is devised on the MIM resonator by photomask technology. Patterned encoding for security label is achieved on the MIM resonator by engineering humidity-tunable pixels of Au/MOFs-Polymer/Au and humidity-invalid pixels of Au/MOFs/Au.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.