{"title":"从 7,8,9,10-氟蒽二酰亚胺制备非替代性苯并二氟蒽四酰亚胺:合成、结构和光学限制特性。","authors":"Hanwen Qin, Lingli Zhao, Liping Zheng, Zhipeng Ma, Miaoli Liao, Jibin Sun, Chenghua Sun, Huajie Chen","doi":"10.1002/chem.202403332","DOIUrl":null,"url":null,"abstract":"<p><p>A novel tetraimide-functionalized non-alternant π-conjugated system, namely, benzodifluoranthene tetraimides (BDFTI), has been designed and synthesized through highly efficient UV-photocyclization of a vinyl-bridged fluoranthene diimide dimer (i. e., FDI-V). The synthesis of FDI-V starts from a straightforward three-step route to produce novel 7,8,9,10-fluoranthene diimide (FDIs) building-blocks, followed by nearly complete bromination and then Stille-coupling reaction to give the desired dimer. The analysis by X-ray crystallography confirms a near-coplanar geometry for FDIs, while BDFTI shows a U-shaped and distorted backbone configuration proven by theoretical optimizations. The tetraimide BDFTI exhibits several advantages over the FDI cores, including an extended absorption band and a red-shift in photoluminescence spectra. This enhancement can be attributed to the presence of additional electron-deficient imide units, which promotes increased intramolecular charge transfer and improved electron affinity. All the imides show a local aromatic characteristic owing to the incorporation of pentagon rings in the π-frameworks. The fully fused BDFTI exhibits nonlinear optical properties as analyzed by the open-aperture Z-scan technique, demonstrating superior optical-limiting performance compared to vinyl-bridged FDI-V. The versatile UV-photocyclization chemistries provide a pathway for developing complex and unique multiimide-functionalized π-conjugated systems, paving the way for creating high-performance optical-limiting materials.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403332"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-alternant Benzodifluoranthene Tetraimides from 7,8,9,10-Fluoranthene Diimides: Synthesis, Structure, and Optical-Limiting Properties.\",\"authors\":\"Hanwen Qin, Lingli Zhao, Liping Zheng, Zhipeng Ma, Miaoli Liao, Jibin Sun, Chenghua Sun, Huajie Chen\",\"doi\":\"10.1002/chem.202403332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel tetraimide-functionalized non-alternant π-conjugated system, namely, benzodifluoranthene tetraimides (BDFTI), has been designed and synthesized through highly efficient UV-photocyclization of a vinyl-bridged fluoranthene diimide dimer (i. e., FDI-V). The synthesis of FDI-V starts from a straightforward three-step route to produce novel 7,8,9,10-fluoranthene diimide (FDIs) building-blocks, followed by nearly complete bromination and then Stille-coupling reaction to give the desired dimer. The analysis by X-ray crystallography confirms a near-coplanar geometry for FDIs, while BDFTI shows a U-shaped and distorted backbone configuration proven by theoretical optimizations. The tetraimide BDFTI exhibits several advantages over the FDI cores, including an extended absorption band and a red-shift in photoluminescence spectra. This enhancement can be attributed to the presence of additional electron-deficient imide units, which promotes increased intramolecular charge transfer and improved electron affinity. All the imides show a local aromatic characteristic owing to the incorporation of pentagon rings in the π-frameworks. The fully fused BDFTI exhibits nonlinear optical properties as analyzed by the open-aperture Z-scan technique, demonstrating superior optical-limiting performance compared to vinyl-bridged FDI-V. The versatile UV-photocyclization chemistries provide a pathway for developing complex and unique multiimide-functionalized π-conjugated systems, paving the way for creating high-performance optical-limiting materials.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\" \",\"pages\":\"e202403332\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202403332\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403332","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Non-alternant Benzodifluoranthene Tetraimides from 7,8,9,10-Fluoranthene Diimides: Synthesis, Structure, and Optical-Limiting Properties.
A novel tetraimide-functionalized non-alternant π-conjugated system, namely, benzodifluoranthene tetraimides (BDFTI), has been designed and synthesized through highly efficient UV-photocyclization of a vinyl-bridged fluoranthene diimide dimer (i. e., FDI-V). The synthesis of FDI-V starts from a straightforward three-step route to produce novel 7,8,9,10-fluoranthene diimide (FDIs) building-blocks, followed by nearly complete bromination and then Stille-coupling reaction to give the desired dimer. The analysis by X-ray crystallography confirms a near-coplanar geometry for FDIs, while BDFTI shows a U-shaped and distorted backbone configuration proven by theoretical optimizations. The tetraimide BDFTI exhibits several advantages over the FDI cores, including an extended absorption band and a red-shift in photoluminescence spectra. This enhancement can be attributed to the presence of additional electron-deficient imide units, which promotes increased intramolecular charge transfer and improved electron affinity. All the imides show a local aromatic characteristic owing to the incorporation of pentagon rings in the π-frameworks. The fully fused BDFTI exhibits nonlinear optical properties as analyzed by the open-aperture Z-scan technique, demonstrating superior optical-limiting performance compared to vinyl-bridged FDI-V. The versatile UV-photocyclization chemistries provide a pathway for developing complex and unique multiimide-functionalized π-conjugated systems, paving the way for creating high-performance optical-limiting materials.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.