无膜水电解低成本制氢技术。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xintong Gao, Pengtang Wang, Xiaogang Sun, Prof. Mietek Jaroniec, Prof. Yao Zheng, Prof. Shi-Zhang Qiao
{"title":"无膜水电解低成本制氢技术。","authors":"Xintong Gao,&nbsp;Pengtang Wang,&nbsp;Xiaogang Sun,&nbsp;Prof. Mietek Jaroniec,&nbsp;Prof. Yao Zheng,&nbsp;Prof. Shi-Zhang Qiao","doi":"10.1002/anie.202417987","DOIUrl":null,"url":null,"abstract":"<p>Conventional water electrolysis relies on expensive membrane-electrode assemblies and sluggish oxygen evolution reaction (OER) at the anode, which makes the cost of green hydrogen (H<sub>2</sub>) generation much higher than that of grey H<sub>2</sub>. Here, we develop an innovative and efficient membrane-free water electrolysis system to overcome these two obstacles simultaneously. This system utilizes the thermodynamically more favorable urea oxidation reaction (UOR) to generate clean N<sub>2</sub> over a new class of Cu-based catalyst (Cu<sub>X</sub>O) for replacing OER, fundamentally eliminating the explosion risk of H<sub>2</sub> and O<sub>2</sub> mixing while removing the need for membranes. Notably, this membrane-free electrolysis system exhibits the highest H<sub>2</sub> Faradaic efficiency among reported membrane-free electrolysis work. In situ spectroscopic studies reveal that the new N<sub>2</sub>H<sub>y</sub> intermediate-mediated UOR mechanism on the Cu<sub>X</sub>O catalyst ensures its unique N<sub>2</sub> selectivity and OER inertness. More importantly, an industrial-type membrane-free water electrolyser (MFE) based on this system successfully reduces electricity consumption to only 3.78 kWh Nm<sup>−3</sup>, significantly lower than the 5.17 kWh Nm<sup>−3</sup> of commercial alkaline water electrolyzers (AWE). Comprehensive techno-economic analysis (TEA) suggests that the membrane-free design and reduced electricity input of the MFE plants reduce the green H<sub>2</sub> production cost to US$1.81 kg<sup>−1</sup>, which is lower than those of grey H<sub>2</sub> while meeting the technical target (US$2.00–2.50 kg<sup>−1</sup>) set by European Commission and United States Department of Energy.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 6","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost\",\"authors\":\"Xintong Gao,&nbsp;Pengtang Wang,&nbsp;Xiaogang Sun,&nbsp;Prof. Mietek Jaroniec,&nbsp;Prof. Yao Zheng,&nbsp;Prof. Shi-Zhang Qiao\",\"doi\":\"10.1002/anie.202417987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional water electrolysis relies on expensive membrane-electrode assemblies and sluggish oxygen evolution reaction (OER) at the anode, which makes the cost of green hydrogen (H<sub>2</sub>) generation much higher than that of grey H<sub>2</sub>. Here, we develop an innovative and efficient membrane-free water electrolysis system to overcome these two obstacles simultaneously. This system utilizes the thermodynamically more favorable urea oxidation reaction (UOR) to generate clean N<sub>2</sub> over a new class of Cu-based catalyst (Cu<sub>X</sub>O) for replacing OER, fundamentally eliminating the explosion risk of H<sub>2</sub> and O<sub>2</sub> mixing while removing the need for membranes. Notably, this membrane-free electrolysis system exhibits the highest H<sub>2</sub> Faradaic efficiency among reported membrane-free electrolysis work. In situ spectroscopic studies reveal that the new N<sub>2</sub>H<sub>y</sub> intermediate-mediated UOR mechanism on the Cu<sub>X</sub>O catalyst ensures its unique N<sub>2</sub> selectivity and OER inertness. More importantly, an industrial-type membrane-free water electrolyser (MFE) based on this system successfully reduces electricity consumption to only 3.78 kWh Nm<sup>−3</sup>, significantly lower than the 5.17 kWh Nm<sup>−3</sup> of commercial alkaline water electrolyzers (AWE). Comprehensive techno-economic analysis (TEA) suggests that the membrane-free design and reduced electricity input of the MFE plants reduce the green H<sub>2</sub> production cost to US$1.81 kg<sup>−1</sup>, which is lower than those of grey H<sub>2</sub> while meeting the technical target (US$2.00–2.50 kg<sup>−1</sup>) set by European Commission and United States Department of Energy.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 6\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417987\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的水电解依赖于昂贵的膜电极组件和阳极缓慢的氧进化反应(OER)。在此,我们开发了一种创新、高效的无膜水电解系统,以同时克服这两个障碍。该系统利用热力学上更有利的尿素氧化反应(UOR),在新型铜基催化剂(CuXO)上生成清洁的 N2,从根本上消除了 H2 和 O2 混合的爆炸风险,同时无需使用膜。值得注意的是,在已报道的无膜电解工作中,这种无膜电解系统显示出最高的 H2 法拉第效率。原位光谱研究表明,CuXO 催化剂上新的 N2Hy 中间体 UOR 机制确保了其独特的 N2 选择性和 OER 惰性。更重要的是,基于该系统的工业型无膜水电解槽(MFE)成功地将耗电量降至 3.87 kWh Nm-3,大大低于商用碱性水电解槽(AWE)的 5.17 kWh Nm-3。综合技术经济分析(TEA)表明,MFE 工厂的无膜设计和减少的电力输入将绿色 H2 的生产成本降至 1.81 美元 kg-1,低于灰色 H2 的生产成本,同时达到了欧盟委员会和美国能源部设定的技术目标(2.00-2.50 美元 kg-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost

Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost

Conventional water electrolysis relies on expensive membrane-electrode assemblies and sluggish oxygen evolution reaction (OER) at the anode, which makes the cost of green hydrogen (H2) generation much higher than that of grey H2. Here, we develop an innovative and efficient membrane-free water electrolysis system to overcome these two obstacles simultaneously. This system utilizes the thermodynamically more favorable urea oxidation reaction (UOR) to generate clean N2 over a new class of Cu-based catalyst (CuXO) for replacing OER, fundamentally eliminating the explosion risk of H2 and O2 mixing while removing the need for membranes. Notably, this membrane-free electrolysis system exhibits the highest H2 Faradaic efficiency among reported membrane-free electrolysis work. In situ spectroscopic studies reveal that the new N2Hy intermediate-mediated UOR mechanism on the CuXO catalyst ensures its unique N2 selectivity and OER inertness. More importantly, an industrial-type membrane-free water electrolyser (MFE) based on this system successfully reduces electricity consumption to only 3.78 kWh Nm−3, significantly lower than the 5.17 kWh Nm−3 of commercial alkaline water electrolyzers (AWE). Comprehensive techno-economic analysis (TEA) suggests that the membrane-free design and reduced electricity input of the MFE plants reduce the green H2 production cost to US$1.81 kg−1, which is lower than those of grey H2 while meeting the technical target (US$2.00–2.50 kg−1) set by European Commission and United States Department of Energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信