Dr. Fusheng Guo, Dr. Jing Zhang, Yihui Gao, Dr. Zhou Shu, Dr. Fei Sun, Dr. Jing Ma, Dr. Xu Zhou, Dr. Wenyang Li, Prof. Dr. Huawei Mao, Prof. Dr. Xiaoguang Lei
{"title":"发现并全合成治疗自身免疫性疾病的 STING 拮抗剂 Anhydrotuberosin。","authors":"Dr. Fusheng Guo, Dr. Jing Zhang, Yihui Gao, Dr. Zhou Shu, Dr. Fei Sun, Dr. Jing Ma, Dr. Xu Zhou, Dr. Wenyang Li, Prof. Dr. Huawei Mao, Prof. Dr. Xiaoguang Lei","doi":"10.1002/anie.202407641","DOIUrl":null,"url":null,"abstract":"<p>Excessive activation of the stimulator of the interferon gene (STING) pathway has been identified as a significant contributor to various autoimmune diseases, such as STING-associated vasculopathy with infantile-onset (SAVI) and inflammatory bowel disease (IBD). However, discovering effective STING antagonists for treating STING-mediated autoimmune disorders remains challenging. Herein, we identified the natural product anhydrotuberosin (ATS) as a potent STING antagonist by a high-throughput chemical screen and follow-up biological validations. However, the limited supply from natural product isolation impeded the pharmacological evaluations of ATS. Accordingly, we developed a concise and scalable total synthesis of ATS in 6 steps. Enabled by total synthesis, we further extensively investigated ATS's mode of action and evaluated its therapeutic potential. Remarkably, ATS inhibits STING signaling in PBMCs derived from three SAVI patients. ATS showed decent pharmacokinetic parameters and strongly alleviated tissue inflammation in DSS-induced IBD colitis and <i>Trex1</i><sup>-/-</sup> autoimmune animal models with low toxicity. Collectively, this research lays the foundation for developing novel STING antagonists as an effective therapy for autoinflammatory and autoimmune diseases.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery and Total Synthesis of Anhydrotuberosin as a STING Antagonist for Treating Autoimmune Diseases\",\"authors\":\"Dr. Fusheng Guo, Dr. Jing Zhang, Yihui Gao, Dr. Zhou Shu, Dr. Fei Sun, Dr. Jing Ma, Dr. Xu Zhou, Dr. Wenyang Li, Prof. Dr. Huawei Mao, Prof. Dr. Xiaoguang Lei\",\"doi\":\"10.1002/anie.202407641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Excessive activation of the stimulator of the interferon gene (STING) pathway has been identified as a significant contributor to various autoimmune diseases, such as STING-associated vasculopathy with infantile-onset (SAVI) and inflammatory bowel disease (IBD). However, discovering effective STING antagonists for treating STING-mediated autoimmune disorders remains challenging. Herein, we identified the natural product anhydrotuberosin (ATS) as a potent STING antagonist by a high-throughput chemical screen and follow-up biological validations. However, the limited supply from natural product isolation impeded the pharmacological evaluations of ATS. Accordingly, we developed a concise and scalable total synthesis of ATS in 6 steps. Enabled by total synthesis, we further extensively investigated ATS's mode of action and evaluated its therapeutic potential. Remarkably, ATS inhibits STING signaling in PBMCs derived from three SAVI patients. ATS showed decent pharmacokinetic parameters and strongly alleviated tissue inflammation in DSS-induced IBD colitis and <i>Trex1</i><sup>-/-</sup> autoimmune animal models with low toxicity. Collectively, this research lays the foundation for developing novel STING antagonists as an effective therapy for autoinflammatory and autoimmune diseases.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202407641\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202407641","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Discovery and Total Synthesis of Anhydrotuberosin as a STING Antagonist for Treating Autoimmune Diseases
Excessive activation of the stimulator of the interferon gene (STING) pathway has been identified as a significant contributor to various autoimmune diseases, such as STING-associated vasculopathy with infantile-onset (SAVI) and inflammatory bowel disease (IBD). However, discovering effective STING antagonists for treating STING-mediated autoimmune disorders remains challenging. Herein, we identified the natural product anhydrotuberosin (ATS) as a potent STING antagonist by a high-throughput chemical screen and follow-up biological validations. However, the limited supply from natural product isolation impeded the pharmacological evaluations of ATS. Accordingly, we developed a concise and scalable total synthesis of ATS in 6 steps. Enabled by total synthesis, we further extensively investigated ATS's mode of action and evaluated its therapeutic potential. Remarkably, ATS inhibits STING signaling in PBMCs derived from three SAVI patients. ATS showed decent pharmacokinetic parameters and strongly alleviated tissue inflammation in DSS-induced IBD colitis and Trex1-/- autoimmune animal models with low toxicity. Collectively, this research lays the foundation for developing novel STING antagonists as an effective therapy for autoinflammatory and autoimmune diseases.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.